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Topologies of common-channel packet radio networks (PRNETS) are difficult to op-
timize because some of the links between multiple pairs of packet radio units are not
independent. Previous analysis has shown that designing the topology to provide spatial reuse of
the common-channel will improve the network throughput and delay performance in general.
Unfortunately, the complexity of the link interactions has impeded the design of protocols that
can be implemented in operational networks. This dissertation discusses how to optimize the
topolog.=s of common-channel random-access PRNETS through dynamic power control at the

link layer and routing at the netwotk layer.
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Methods of implementing dynamic power control at the Link layer on an individual ﬂ
packct-by.-packet transmission basis are presented. These methods should be implementable at

the link layer of any packet radio with dynamic per-packet power control capability.

A new routing protocol, called Least Interference Routing (LIR ), is defined which is
designed specifically to operete in common-channel random-access PRNETs. The goal of LIR is
to minimize the destru.tive interference caused along eacli route within the network, thus im-
proving the spatial reuse of the common-channel. The LIR protocol calculates the potential
destructive interference along each link, creates the network routing tables that minimize the
potential destructive interference along an entire route, and specifies the per-packet transmission
power. The implementation flexibility of each of these operations allows LIR to be implemented

in a variety of radios and radio networks. s

Myopic one-hop and netwoik multiple-hop simulations indicate that dynamic power
control and/or LIR improve end-to-end PRNET performance over no power control or other rout-

ing strategies, such as minimum hop routing.
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1. INTRODUCTION

1.1 Packet Radio Networks

A packet radio network (PRNET) is a packet-switched network in which the switch-
ing elements, called packet radio units (PRUS), are connected using radio frequency (tf) channels
or links [Leine87a) [Kahn78). Therefore, a PRNET can use the traditional advantages of radio
communications over wire-line communications for packet-switching. These advantages include
mobile operation, easy PRNET deployment, easy PRNET addition of new PRUs, and redundancy
and reliability through the broadcast nature of rf. Figure 1-1 shows a typical packet radio net-

work structure.

Any packet-switched network that uses rf channels could theoetically be considered a
PRNET. Generally, however, PRNETS are considered to be networks that apply the notion of
packet-switching to radios with only a single antenna and transceiver. This would exclude any
point-to-point rf packet-switched network with independent links, such as an ARPANET-like
network in which there are individual transmitters, receivers, antennas, and modems for each in-

dividual rf link between switching nodes, as shown in Figure 1-2.

PRNET: provide a subnet relay or intermediate system (IS) function between higher
layer network relay or end systems (ESs) functions. Therefore PRNETS lie within the lower
three layers of both the Intemational Standards Organization (ISO) Open Systems Interconnec-
tion (OSI) Protocol Reference Model {ISO84] and the Department of Defense (DoD) Internet

Architecture Model [Cerf83]. This protocol relationship is shown in Figure 1-3. PRNETS typi-
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5
cally contain unique physicai, link, and network protocols specifically tailored for that PRNET.’
Users of PRNETS, however, typically want to com~unicate with other users or resources located

on other networks and thus use standard higher layer protocols, i.c., standard application, presen-

. . . L 1]
tation, session, transport, and often (inter)network.

In general, the layers of the protocol models were assumed to be fairly independent,
and layer boundaries were created "... at a poirt where the description of services can be small
and the number of interactions across the boundary are minimized" [ISO84). This assumption is
true in general for networks with independent links. Unfortunately, this assumption is not true
for PRNETs with dependent links. The interdependence of the PRNET link and network
protocol layers, coupled with the varying performance of rf chennels in general, make the design
of efficient PRNET protocols a difficult task. Leiner, et al, have presented an overview of the

interrelated design issues in PRNETS [Leine87b).

* Some PRNETSs (typically point-to-point PRNETSs) use standard protocols at the
network layer. An example is the Amateur Packet Radio Network, which uses AX.25
for its network layer protocol [Karn85).

** Standard protocols are designed to work above all netwoiks and tyrically assume a

certain minimum network capability, e.g. minimum end-to-end bandwidth. Therefore
PRNET: with a very small channel bandwidth sometimes have PRNET specific higher
level protocols (typically transport) that are designed for optimized performance
between users of that PRNET. An example is Simple End-to-End Protocol (SEEP), the
transport layer protocol used in the Rockwell Survivable Extended Frequency HF
Network (SEFN) [Mille87).
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1.2 RF Channels

The rf spectrum is shared among the PRUs in a PRNET through some separation in
frequency, time, or space. This sharing may be in the form of 2 single, common (broadcast)
channel that multiple PRUs can hear and transmit on, or else in the form of many (unique) point-

to-point channels between pairs of PRUs.

The PRUs that share a common broadcast channel resource transmit and listen on the
same frequency, use the same rf modulation technique such as frequency modulation (FM) or
amplitude modulation (AM), and typically use omni-directional antennas. Point-to-point channel
resources are normally separated in frequency using frequency division multiple access (FDMA)
or spread spectrum techniques, but may also be separated in space through the use of directional

antennas.

A common broadcast channel resource is shared among multiple PRUs through
separation in time and space. Similarly, a single PRU antenna is shared among multiple point-to-
point links at a single PRU through separation in time; and a point-to-point channel resource may
be shared and reused on multiple point-to-point links by multiple pairs of PRUs through separa-

tion in space.

The reuse and management of time is usually referred to as the channel access
protoco! [Tobag87). Channel access protocols can be divided into two groups: contention-free
and random (or contentior.-based). Time division multiple access (TDMA) is an example of a

contention-free channel access protocol; Aloha is an example of a random-access protocol.




1.3 Common-Channel Random-Access PRNETs

In general, the implementation of mobile PRNET operation, PRNET deployment,
PRNET expansion, and PRNET redundancy and reliability is easier and simpler for common-

channel random-access PRNETS than for point-to-point PRNETS.

For example, it is relatively straightforward for PRUs to determine their link connec-
tivity as they move around in a common-channe! PRNET. Berause PRUs share a common
broadcast channel resource, it is easy for two PRUs to leam that they have moved within com-
munication range of each other when they hear each other transmit. This task is more difficult
with point-to-point FRNETSs. A mobile PRU in a point-to-point PRNET must predict that it will
be moving out of range of one group of PRUs and into range of another group of PRUs so that it
can exchange channel information ahead of time to be able to communicate with the second
group of PRUs. Alternatively, a mobile PRU can continue communicating with its older set of
neighbor PRUs until it no longer can hear them. Then, the mobile PRU will have to go through a
(possibly abbreviated) net entry process to find the point-to-point channel parameters of the new

PRUs with which it has the potential to communics*e.

The importance of common-channel random-access PRNETS can be inferred from the
fac’ that many different operational common-channel random-access PRNETSs have been built
and fielded. Many of these PRNETs will be discussed in Section 2.1. Henceforth, unless noted

otherwise, our discussion will be restricted to common-channel random-access PRNETs.

The performance of the common-channel can be optimized through the use of separa-
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tion in time and/or space. The area of channel access techniques (time separation) has been ex-
tensively studied and a plethora of channel access protocols have been analyzed and many have
been implemented [Tobag80]. The area of spatial reuse has also been studied. However, there

are fewer analytical results and few, if any, operational protocols.

1.4 Spatial Reuse

Depeundiing upon the PRNET topology and individval PRU transmission powers,
PRUs can be separated in space such that certain combinations of PRUs can transmit at the same
time without destructively interfering with each other. The ability to support multiple simul-

taneous transmissicns through separation in space is called "spatial reuse” [Klein87]..

Separation in space may result from propagation loss or because one part of the net-
work is shieided from other parts due to obstructions, such as hills or buildings, or from the
nature of the radio wave propagation. A very simple model of the PRNET topology is a graph in
which the vestices correspond to the PRUs and links correspond to pairs of PRUs that can suc-
cessfully transmit and receive packets between each other. Such a graph lets us determine if the
same rf channel frequency resource can be used on two links simultaneously without inter-

ference. Figure 1-4 shows an example of successful spatial reuse with this very simple model.

Kleinruck and Silvester present an overview of the previous analyses in their survey

~—r "

*  Spatial reuse (or spatial separation) should not be confused with spatial diversity,
which is a te “hnique where two or more spatially separated antennas are nsed to reduce
the duration and frequency of multipath fading events on an rf link, typically
line-of-sight (LOS) microwave [Vigan75).
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¢ Transmitting PRUs

‘ PRUs which

cannot receive
packets due
to interference

O PRUs which
can receive
packets

Figuie 14. Exumple of Spatial Reuse in a Common-Chunnel PRNET
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{ paper [Klein87). This previous work indicated that power control is important in providing spa-
‘:‘% tial reuse and increasing the performance of the common (broadcast) channel, and will be

discussed in Chepter 4.

Unfortunately, the transmission strategies from this previous work, although useful for
analysis, are not implementable in real networks. Kleinrock and Silvester describe the difficulty
of designing protocols for spatial reuse in real networks, as follows:

We can identify (but not solve!) several problems for continued study. ... [One] is
the development of operational protocols wheze each nodc is allowed to make local
decisions as to when to transmit, what power to use, and which node to select as the
next node on the path to the final destination as a function of the current traffic load-
ing. Optimal selection of (re-)transmission control parameters in conjunction with
range contro! is an additional problem that has not been solved [Klein87).

1.5 Summa ; of Results

e%* The original research presented in this dissertation includes methods of performing
spatial reuse in operational common-channel random-access PRNETs through dynamic power
and routing control. Simulation results are also presented comparing these algorithms to previous

work in this area.

The dissertation is organized as follows: Chapter 2 will describe the structure and
protocols used in packet radio in terms of operational PRNETS and some of the assumptions and
models used for analysis and simulation. Chapter 3 discusses the advantages of dynamic power
control, and presents some methods of performing dynamic power control in common-channel

operational networks. Chapter 4 reviews the previous work performed in spatial reuse.

, Chapter 5 presents a new routing protocol called Least Interference Routing (LIR) that
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can provide spatial reuse in PRNETS. LIR is designed specifically to operate in common-channel

random-access PRNETs. The goal of LIR is to minimize the destructive interference caused
along each route within the network, thus maximizing the spatia! reuse of the common radio
channel. Increasing the spatial reuse of the common radio channel can improve the network
throughput and delay performance in general. If the PRNETSs suppont dynamic power contrcl,
then LIR specifies the network route and the transmit power used in cact. hop of the route. If the

PRNET does not support dynamic power control, then LIR can still provide spatial reuse through

route selection.

Chapter 6 presents simulation results comparing a myopic version of LIR to the
analytic transmission/routing strategies discussed in Chapter 4; Chapter 7 presents simuletion
results comparing LIR and minimum-hop routing in multiple-hop networks with and without
power control. These simulations show the PRNET performance advantage of power control
over no power control and the advantage of LIR over minimum-hop routing. Chapter 8 contains

a brief summary of the results of this dissertation and presents some areas of power control and

spatial reuse for future research.

:
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2, COMMON-CHANNEL RANDOM-ACCESS PRNETS

2.1 Introduction

This section discusses opeiational common-channel random-access PRNETs. The
discussion examines each of the three lower protocol layers of PRNETS: Physical, Data-Link,
and Network. Leiner, et al, have presented an overview of the issues in operational PRNETs
[Leine87b); and Tobagi has presented an overview of the models used in the simulation and

analysis of PRNETSs [Tobag87].

Although there have besn operational experiments with common-channel random-
access PRNETSs other than LOS temrestrial PRNETs [Gerla77]; long-haul PRNETsS, &.g., high
frequency (hf) PRNETs and satellite PRNETS, generally use point-to-point links and/or
contention-free channel-access protocols. Therefore, we will limit our discussion to LOS ter-

restrial PRNET.

Table 2-1 provides an overview of the most important aspects of some past and
present operational common-channel random-access PRNETs. The discussion will include
details from all of these networks, but most of the attention will be focused on the latest opera-

tional DARPA PRNET [Jubin87].

2.2 RF Channels

The 1f channel is the PRNET physical media that provides the link connectivity be-

tween PRUs. We say that there is a link connecting PRU-A to PRU-B if PRU-B can receive

12
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Univ. of EPR/ LPR SINC- RSRE
Hawali iPR GARS CNR |Amateur | Indoor
PRNET : DARPA
Aloha DARPA PRNET packet packet | PRNETs |PRNETs
PRNET | PRNET applique | applique
407 |1718 |1718 3088 | 3076 | Votes: | varies;
frequency MH GHz GH MH MH 145 MHz | 72 MH2z
4 z z z z typical | typical
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No Yes Yes Yes Yes No No
ctrl pwr?
| =
S num pwr
] P 1 5 4 4 4 1 1
- levels
-g 20,25
7] power i T -3, 22, 20, 30, varies;
Fa levels 40dBm | 30, 35, 36, 47, | 42,47 | vardes |20dBm
o 37 dBm
(dBm) 40 dBm dBm dBm typical
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27 km 10 km 10 km 80 km 80 km varies 100 m
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@ channel Aloha | CSMA
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- protocol | chanrel) | Aloha)
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(=
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3] e of active & | active& | active &
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ingl
;:: eh:; ] single multiple | multiple | muitiple | multiple | multiple single
= s .
o
2 | routing o Min Min Min Min | Manual "
g - metric Hop Hop Hop Hop | Source
routing
Jubin87 | Lewizf” | Davie87 | Kam85 | RayNe88
References | Binde75 | Kahn7s y
Fiter87 Jane8i« | Jane88b | EST88 Byte88

Table 2-1. Some Operational Common-Channel Random-Access PRNETs
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@ some minimum amount or fraction of error-free packets. Link connectivity depends upon the rf
propagétion and the channel-signaling method used. In general, a pécket is received error-free

across the link from PRU-A to PRU-B if the received rf signal at PRU-B is above PRU-B’s re-

n g an g gb - d : Pl s il Ve

quired minimum signal-to-noise (s/n) threshold and if PRU-B is listening for the rf signal. Note

that the quality of an rf link refers to the probability that a transmitted packet will be received

error-free.

2.2.1 RF Propagation

RF propagation parameters affect an rf signal from the time it is transmitted to the
time it is received. Major parameters include the frequency used, the distance and terrain be-
tween PRUs, the rf transmit power, the type and orientation of antennas, the noise environment,
the PRNET internal noise, i.e., interference from other PRU transmissions, and the degradations

of the rf signal, e.g., from multipath or fading.

2.2.1.1 Frequencies Used

Higher frequencies generally have higher bandwidth but are limited to LOS com-

munications. Lower frequencies support lower bandwidth but may go beyond-line-of-sight
(BLOS). Most common-channel PRNETS operate in the very-high-frequency (vhf) or ultra-high-
frequency (uhf) ranges, i.e., 30 MHz to 3 GHz. Although BLOS communications can still occur

in the lower vhf frequencies, we will limit our discussion to LOS communications.
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2.2.1.2 Transmit Power and RF Power Attenuation

PRUs ecither have no power control, i.e., they always transmit at the same rf power
level, or only a few discrete steps of power control. For example, the DARPA low-cost packet

radio (LPR) has a dynamic output power range of 24 dB selectable in 8 dB steps [Fifer87].

RF signals are attenuated as they spread out through space. Two theoretical path
power attenuation laws [Refer77] are the Free Space Law, where power falls off as the square of
the distance, i.e.:

Path loss (dB) o« 20 log]0 (distance in kilometers)

and the Plane Earth Law, where power falls off as the fourth power of the distance, i.c.:
Path loss (dB) =< 40 log10 (distance in kilometers)

Notice that these laws indicate that the power falls off as a function of the change in
order of magnitude of the distance. In other words, the attenuation between 100 meters and 10
kilometers should be the same as between 1 and 100 kilometers. In addition to these theoretical
laws, there are empirical models, such as the Longley-Rice Model [Longl68]. Figure 2-1 com-
pares the attenuation versus distance for the Longley-Rice Model and the Free Space Law.
Figure 2-2 shows a correspondence between transmission range and path loss for a dynamic dis-

tance range from 100 meters to 10 kilometers.

These laws and models imply if two receivers are the same distance from a transmit-
ter, then they should receive the transmission at the sams power level. In practice, the

deployment of PRUs in actual terrain can drastically affect the rf power attenuation. For
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Figure 2-1. Path Loss Versus Range
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Figure 2-2. Transmission Ranges as a Function of Discrete Power Levels
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example, a PRU in a gully will usually have poorer reception than a PRU on a hill. Okumura

found that uhf receive power levels have a variance of up to 24 dB between receivers at the same
distance from a transmitter [Okumu68]. The connectivity analysis/simulation of uhf ground
based PRNETS by Sass and Brennan showed a similar range of received power levels [Sass84a]

[Sass84b] [Brenn86).

2.2.1.3 Type of Terrain and PRU Siting

PRUs are normally placed where the users need them,; therefore, they are not neces-
sarily sited where the radio connectivity is the best, e.g., on top of a hill. Because it is hard to try
to postulate the actual user layout, most PRNET analyses assume that the PRUs are located in
cither a regular or ranndom structure. The random structure may be modeled by locating the
PRUs in the plane as a Poisson process. In this case, if A is the average density of nodes per unit
area, then the probability of finding k nodes in a region of area A is:

Prikin A} = (AA)¥e?? /!

Knowing A, we can find the expected number of nodes, or average degree d, in a
transmission range of size r:

d= Axr?

PRNET connectivity analysis and suimulation by Sass and Brennan indicate that ex-
pected deployments of PRNETS in actual terrain show a close structural resemblance to networks

generated using a Poisson dist.ibution of nodes and fixed transmission radius [Sass84a]

[Brer:n86] [Sass84b). This implies that analyses/simulations of PRNET performance using a ran-
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dom PRNET topology to approximate real deployments should be fairly accurate.

2.2.1.4 Antenna Type and Orientation

Omni-directional antennas radiate out equally in all directions, while directional an-
tennas focus more of the energy in smaller volumes of space. Therefore, omni-directional
antennas are especially useful for mobile PRUs. Most of the operational networks, with the pos-

sible exception of the amateur PRNETS, use omni-directional antennas.

2.2.1.5 PRNET External Noise

Orne of the factors that will affect the probability of correct reception of an rf signal is
the noise level at the receiver. The noise level will vary in intensity with time. This variation in
noise can occur over short or long periods of time. Thc if signaling technique, along with an rf
margin, is designed to overcome noise variations that occur over iime intervals shorter than the
interval to transmit a packet. Variations on the order of the packet transmission time are over-
come by packet retransmissions, i.e., automatic-repeat-request (ARQ). Variations that are one or
two orders of magnitude larger than the packet transmission time are overcome by increasing
cither the gain of the packet through reducing the data rate, strengthening the forward-error-
correction (FEC) code, or increasing the transmit power level. Longer variations are overcome at

the network level by determining new routes which do not use the bad link.

2.2.1.6 PRNET Internal Interference

The omni-directional propagation nature of rf signals means that rf signals transmitted
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' . from several PRUs can overlap in time at a single receiving PRU. Generally, PRUs ordy have a
) ﬁ&

single receiver so that, at most, one of these overlapping signals can be received.

The overlapping signals interact with one another, causing distortion to the received rf

signal. This interaction is called interference. Interference is said to be destructive when a

i receiving PRU cannot correctly receive an otherwise error free rf signal. Destructive interference
q
4
':' that occurs to rf signals that are not intended for the receiving PRU does not degrade PRNET per-

=

formance, while destructive interference that occurs to rf signals intended for the receiving PRU

E: can degrade PRNET performance. Figure 2-3 shows an example of PRNET performance degrad-
4

N .

f ing interference, where the rf signal from PRU-i overlaps with PRU-j’s rf signal at PRU-k such
that PRU-k is prevented from receiving an otherwise error-free transmission from PRU-j.

The probability that one rf signal will cause destructive interference to another rf sig-

;f nal at its intended receiving PRU is the probability that the two rf signais overlap in time at the
]
G

intended receiving PRU times the conditional probability that the r{ signals cause destructive in-

». srence with an otherwise successful reception of the intended rf signal.

R The average amount of performance-degrading interference that PRU-i could cause to
)

the Pk TE per transmission is the sum of the amount of performance degrading interference that

oy

PRU-. could cause to every other PRU! in the PRNET. Using the following notation:

v-'.-

I(i) = amount of potential PRNET performance degrading interference caused by a

PRU-i transmission, where I(i) is a sum of several probabilities and thus can be
greater than 1

I(i,k) = amount of potential performance degrading interference a PRU-i transmis-
. sion causes to otherwise successful receptions by PRU-k
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PRU-i destructively
interferes with PRU-j
when their signals

overlap at PRU-k.

Figure 2-3. Example PRNET Performnance Degrading Interference
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I(i,j,k) = conditional probability that a PRU-i transmission causes destructive inter-
ference with an otherwise successful transmission from PRU-j to PRU-k, given
that the PRU-i and PRU-j rf signals overiap in time at PRU-k

O(i,j,k) = probability that the rf signals transmitted by PRU-i and PRU-j overlap in
time at PRU-k

we can say that:
1) = 2a 160 = 2k gk OGL) o 1Gja)

Performance-degrading interference can be reduced by making O(ijk) or I(i,jk)
small. Contention-free channel access protocols are designed so that O(ijk) = 0, while
contention-based channel access protocols are designed so that O(i,j,k) < k where k is some posi-
tive upper bound less than 1. In addition, in multihop PRNETS there usually exist some PRUs

that are separated in space so that I(i,j k) = 0.

Point-to-point rf channcts alleviate but do not eliminate interference. For example,
code division multiple access (CDMA) allows a PRU receiver to currectly dernodulate or “cap-
ture” one of several overlapping and partially nondestructive interfering rf signals [Pursi87).
However, if the net power of overlapping rf signals becomes greater than some threshold,

destructive interference occurs and the PRU cannot receive an 1f signal correctly.

In general, however, as shown in Table 2-2, there will be more performance degrad-
ing interference between links in a common-channel random-access PRNET than there will be

for PRNET using point-to-point or contention-free channels.
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channel access

contention-free random-based

O(i,jyk)= 0
V(i,jk)= O

—_p (i) 2 0

I(i,jk)= O

— (i) 2 0

O(ijk) >0
1(i,jk) > 0

O(ijk)= 0

— (i) = 0
—_ (i) >0

Table 2-2. Interference and Type of PRNET
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2.2.1.7 RF Signal Degradation

RF signals are subject to variations in attenuation of signal strength along a path. This
attenuation is called fading. For cxample, rf signals are subject to multipath, where copies of a
signal take different length paths and arrive at the destination out of phase, thus interfering with
each other. Multipath fading is frequency dependent. In addition, changes in refractive index

also give rise to flat fading.

The fading time interval can be overcome through the same measures as mentioned in
Section 2.2.1.5 for overcoming external noise. A useful antimultipath technique is to reduce the
data rate to reduce the amount of overlap of digital symbols at the receiver, at the expense of
larger transmission times. Other antimultipath methods do not have this cost, e.g., adaptive

equalization, but may be hard to apply in burst, i.e., packet, systems.
2.2.2 Channel Signaling Method
There are two basic signaling methods used by PRNETS: narrow-band and wide-band
(or spread spectrum) signaling.
2.2.2.1 Narrow-Band Channel Signaling

Narrow-band channel signaling modulates the data bits directly onto the rf carrier
through FM or AM. Therefore, the overlap of two packets at some receiver with nearly the same

power level results in the mutual interference and loss of both packets. If the two packets had
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widely different power levels, then the more powerful packet could be received correctly through

some form of power capture. Thus, PRNET-generated interference may be reduced somewhat

using capture mechanisms. Most operational PRNETS have some limited amount of capture.

2.2.2.2 Wide-Band Channel Signaling

Wide-band channel signaling generally refers to the use of spread spectrum techni-
ques [Pursi87] but alyo includes FM. Wide-band FM has a much greater amount of capture than

does narrow-band FM.

Spread spectrum is based on some form of coding of the data bits and uses a much
wider bandwidth than does narrow-band signaling for the same data rate. Two different spread
spectrum signaling operations incl;xde direct sequence pseudo-noise (PN) modulation and fre-
quency hopping (FH). In general, spread spectrum meets several PRNET performance needs,
including (1) code division, (2) tinie capture, (3) antimultipath, and (4) protection against narrow-

band interference. Code division refers to the fact that multiple transmissions with orthogonal

spread spectrum codes mey overlap in time with little or no effect on one another. Time capture
refers to the ability of an idle receiver to successfully receive a packet with a given code despite

the fact that other packet transmissions may overlap in time with the same or different codes.

The interference term I(i,j k) is much more complex for the spread spectrum case than
for the narrow-band case. In particular, the interference depends upon the type of spread

spectrum signaling used. For example, some of the different types of signaling depend upon the

codes used in the preamble and may be space-homogeneous, receiver-directed, or transmitter-
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| directed. In general, we may assume that spread spectrum systems cause much less interference

than anrow-band systems.

2.3 Link Protocols

The PRNET link protocols are concemned with the communications between adjacent
PRUs. (Two PRUs A and B are considered to be adjacent if PRU-A can hewr PRU-B’s transmis-
sions or PRU-B can hear PRU-A's transmissions.) Important parts of the link protocols include
the channel access protocols, the link determination and control, and the packet transmission and

retransmission protocols.

2.3.1 Channel Access Protocols

éﬂn As discussed in Section 1.2, the channel access protocol describes how PRUs access
°
the common-channel in time. There are two basic types of random-access channel access

protocols: the Aloha type and the carrier sense type. Each of the two types has several variants.

Basically, a PRU will attempt transmission of a packet at random points in time.
Packets scheduled for transmission that are inhibited by the operation of the channel access

protocol will be considered again for transmission at some futur= point in time.

2.3.1.1 Pure Aloha

In pure Aloha, a PRU is allowed to transmit only if it is not already transmitting

[Abram70]. The PRU does not care about the state of the channel in the network. Note that pure

o
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Aloha implies that the reception of a packet by a PRU will be aborted if that PRU schedules a

packet for transmission during the time of the reception. In other words, transmissions have

priority over receptions.

2.3.1.2 Disciplined Aloha

In disciplined Aloha, a PRU is allowed to transmit as long as it is not already trans-
mitting or receiving a packet. Therefore, disciplined Aloha implies some sort of limited channel
sensing that leads to improved performance. Most operational common-channe! random-access

PRNET:S using Aloha use the disciplined variant of Aloha.

2.3.1.3 Slotted Aloha

In slotted Aloha, the time axis is considered to be universal for all PRUs and is
divided into equally sized slots. The time slot is just large enough so that the transmission time
of the largest packet plus the largest propagation time will fit into one slot. The PRUs that have
packets scheduled for transmission in a slot will transmit their packets at the beginning of the
time slot. Slotted Aloha doubles performance over pure Aloha because the probability of packet
overlap is reduced by half. However, slotted Aloha requires that PRUs have synchronized

clocks.

2.3.1.4 Carrier Sense Multiple Access

In carrier sense multiple access (CSMA), PRUs sense the channel before transmitting

to see if any of their ncighboring PRUs are transmitting. A packet will be transmitted only if the
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node is not already transmitting and no ongoing transmissions are sensed. CSMA provides
dramatic improvement over Aloha in a single hop network where every PRU can hear every
other PRU. The CSMA performance is degraded down to almost that of Aloha in dense multihop
networks where there are hidden PRUs. CSMA may or may not be possible in spread spectrum

systems, depending upon the type of spread spectrum signaling used.

2.3.1.5 Busy Tone Multiple Access

Busy tone multiple access (BTMA) is designed ‘o alleviate the problem of collisions
caused by hidden PRUs. In BTMA, a PRU will emit a tone on a separate channel to indicate that
it is currently receiving a packet. The busy tone is then used to inhibit the receiving PRU’s
neighbors from transmitting and thereby interfering with reception. BTMA is less attractive than
Aloha or CSMA because of the extra bandwidth and hardware requirements of the activity-

signaling channel.

2.3.2 Link Determination and Control

Link connectivity is determined by information gathered by the two PRUs at either
end of the link.” Typically, this information is exchanged by the two PRUs to determine the link

quality. The goal of the link is to support some minimum rate of packets in a bi-directional man-

Note that although it is possible to predict average effects of terrain and distance
through the use of detailed topological maps, the knowledge of PRU positions, and the
use of an 1f propagation model; in practice, this information cannot be used to engineer
individual links [Hol!i88].
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ner. Although protocols exist for the use of uni-directional links [Steve86] [Gerla83], they are

not used in routing in operational PRNETSs.

The link quality is a function of the link measurements that the PRUs ¢ \n make. One
method of determining the link quality is to make rf channel measurements such as signal level,
s/n ratio, and bit error rate on a per packet basis. These measurements can then be integrared
over several packets to determine the link quality. Another method is to make measurements at
the data-link layer. This is performed by counting the percentage of packets that are received
correctly over some period of time. The problem with this method is that it typically requires a
longer period of time than do direct measurements of the of channel. Another advantage of direct
f measurements over the data-link measurement is that it is often possible to make predictions
for several different sets of parameters based upon the results from one set of parameters. For ex-
ample, by knowing the received signal level corresponding to one transmit power level, it may be
possible to predict the receive signal level for another transmit power level. The link information

is typically stored in what is known as the PRU neigl:bor table [Jubin87].

2.3.3 Packet Transmission and Retransmission Protoczls

Packet transmission protocols have to decide when to access the channel, i.e., offer
packets to the channel access protocol, as well as decide what radio transmit parameters to use.

Generally, the transmit parameters are chosen from the PRU neighbor table based upon the link

measurements.

An 1f channel has a noisy environment compared to wire-lines. Thus, PRNETs usual-
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ly use some sort of hop-by-hop acknowledgment with hop-by-hop retransmissions to provide a
high degree of probability that a packet will correctly reach its destination. The broadcast nature
of common-channel PRNETSs means that PRUs can use a "passive” or "echo” hop-by-hop ack-
nowledgment, which occurs naturally when a previous PRU in a route can overhear the next PRU
in a route forward a packet. Altemnatively, PRNETS can use "active" acknowledgments in which
a specific acknowledgment packet is sent by a receiver PRU back to a transmitter PRU. Relay
PRUs can use either passive or active acknowledgments, while destination PRUs can use only ac-

tive acknowledgments.
When an acknowledgment is not received and a packet must be retransmitted, it
means that either:
(1) The previous packet was interfered with.
(2) The noise, including jamming, has increased at the receiver.
(3) Fading is occurring on the channel.

(4) The destination is moving into a position having poorer connectivity (such as
away or down into a valley).

(5) The acknowledgment was lost (due to collisions, increased noise, fading, etc.).

(6) The next PRU is congested so that it either had to discard the received packet or

else has stored the received packet in its queue and the packet has not yet been trans-
mitted.

(7) The next PRU is down, e.g. powered-off or failed in some fashion.

Therefore, retransmission algorithms generally increase the delay between transmis-

sions to reduce congestion and also modify the rf transmit parameters (such as cata rate or FEC
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coding rate) in order to increase the gain at the receiving PRU as discussed in Section 2.2.1. q
To avoid channel stability problems, operational PRNETSs will usually employ some
sort of algorithm that determines when the PRUs try to transmit packets. For example, the

DARPA PRNETSs employ an aigorithm called "pacing” [Jubin87] [Gower82].

At some point, the transmitting PRU may decide that the link has gone away com-
pletely. At this point, the transmitting PRU can either iry to perform altemnate routing to the

destination via some other PRU(s) [Jubin87] or discard the packet.

2.4 Network Protocols

Routing protocols determine how to forward and relay packets through a multihop
PRNET to the destination. Note that routing is not required for single hop PRNETs, but is re- d

quired for multihop PRNETS.

Typically, the routing calculation is performed automatically using a minimum-hop
routing metric. However, the amateur PRNETs use manual source routing, where the human

operator has a list of the typical connectivity of the amateur PRUs and thus puts the desired route

into the header of the packet. Each PRU, called a "digipeater” in the amateur PRNET, will read

the route and forward on the packet on to the next "digipeater” in the route.

A shortest path routing algorithm is run using the routing metric as the cost function.
The shortest path routing algorithm can be either centralized or distributed. Three operational

shortest path routing updating methods are:
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(1) A centralized routing method in which a single PRU obtains all link information,
_calculates the network routing tables, and distributes the network routing tables to
" every PRU in the PRNET [Kahn78]. ‘

(2) A distributed routing method in which all link information is broadcast to every
PRU in a PRNET and each PRU then calculates the routes, similar to the new
ARPANET routing algorithm [McQui80].

(3) A distributed incremental routing method in which each PRU broadcasts its net-
work routing tables and its neighbor PRUs incrementally calculate their own routes
[Westc82] [Jubin87].

The output of the routing algorithm is a routing table for each PRU in the network.
The routing table contains every PRU in the PRNET, along with the next PRU in the route to that
&stination. Once the routing tables are built, packet forwarding typically proceeds as follows: A
PRU receives a packet (from either the rf channel or the wire channel to an attached device). The
PRU looks at the packet header to see if it is the destination. If the PRU is the destination, it
processes the packet or gives it to its attached device. If the PRU is not the destination, it looks
in its routing table to determine the next PRU, and hands the packet to the data-link layer for

transmission on the rf channe] to forward the packet to the next PRU.
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3. DYNAMIC FOWER CONTROL

3.1 Importance of Power Control

Because the probability of reception of an f signal at a receiver is dependent upon the
strength of that sigral’s rf power, the goal of power control is to use as little power as possible
and still have a high probability of good reception. Because the attenuation of rf channels and the
strength of interfering noise signals can change rapidly with time, an efficient power control

method must be dynamic in operation.

As pointed out in Section 2.2.1.2, power control is the dominant rf parameter that
PRUs in a common-channel PRNET can vary to adjust their transmission range. As noted in
Section 1.4, the modification of transmit ranges, especially through power control, plays an im-

portant part in performing spatial reuse in common-channel PRNETS.

However, power control is important for other reasons than spatial reuse. Section 3.2
will discuss several uses of power control in radio networks in general, i.e., in both common-
channel and point-to-point channel PRNETs. Section 3.3 will discuss methods of performing
power control in any radio network. Section 3.4 will then discuss how to implement power con-

trol in the transmission protocols of common-channel PRNETS.

3.2 Uses of Dynamic Power Control in Radio Networks

This section discusses the importance of (dynamic) power control i1 radio systems in

general. Even though the discussion is general in nature, all of the points considered are relevant m
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. to packet switching over rf channels.

3.2.1 Increase Spatial Reuse

As discussed in Section 1.4, spatial reuse means that more than one transmission on a
single channel can take place at the same time without destructive interference. Spatial reuse is
important for efficient operation in common-channel PRNETSs. Spatial reuse is also important for
point-to-point networks. Government restrictions on the use of the rf spectrum limit the number
of available channels. Spatial reuse increases the number of point-to-point links that can exist on

a limited set of channels.

Some examples of operational point-to-point networks that use spatial reuse of rf

channels are cellular radio [Erlic79] and common-carrier microwave channels [Bates87]. Al-

o

though the cellular radio cells and the common-carrier networks can be engineered to provide
spatial reuse without dynamic power control, additicnal spatial reuse can provide additional com-

munications capability in these increasingly crowded radio systems [Nagat83] [Jacge86].

3.2.2 Decrease] rference

The channels in point-to-point radio networks are generally considered to be unique
and independent from one another, as shown in the simple conceptual diagram in Figure 3-1A
which illustrates several adjacent frequency channels. In actual practice, this is not true because
of the tf spect=>! 5= iobe: . wn in Figure 3-1B. In Figure 3-1C, because the receiver of signal

B on channel B is close to the transmitter of signal C on channel C, it is possible that the side
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Figure 3-1. Power Control and Adjacent Channel Interference
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lobe of signal C could be larger than the main lobe of signal B, thus causing interference as

shown in Figure 3-1D.

Interference between two point-to-point channels is called "adjacent channel” inter-
ference. Interference caused by an imbalance in signal strength due to differences in distance is
called a "near-far" protlem. Note that "near-far” problems can occur in common-channel radio
networks that have FM or spread spectrum capture capability. FM capture refers to the ability of
a receiver to correctly receive the strongest of several interfering signals; spread spectrum capture
refers to the ability of a receiver to lock on to the first signal to arrive so that later signals look

like noise and can be rejected [Pursi87].

Retuming to Figure 3-1C, we see that transmitter Y did not have to transmit with the

same transmit power as transmitter W because Y's destination is closer to Y than W’s destination
is to W. Figure 3-1E shows that with dynamic power control it could have been possible for X to

have correctly received W's transmission.

Automatic dynamic power control has been used to reduce adjacent channel inter-
ference in point-to-point networks for almost 30 years. Perhaps the first radio network to use
automatic dynamic power control was the Collins Radio High Capacity Communications
(HICAPCOM) experimental network for the U.S. Navy in 1961 [Bagle88). Dynamic power con-
trol has been proposed [Alavi82] [Rosen85] [Viswa82] and tested [Nagat83] for use in cellular
radio systems; has been implemented in the British Ptarmigan Single Channel Radio Access
(SCRA) system [Thomp78]; has been proposed and tested on satellite up-links [Yamam82); and

has been used on some common carrier microwave links [Ramir86).
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Analysis of spread spectrum systems indicates that dynamic power control should

help alleviate the spread spectrum "near-far" problem for point-to-point links [Skaug82]
{Ormon82). Turin has analyzed the effects of "near-far" problems on transmitter and receiver
directed spread spectrum systems, and suggests that although power control helps eliminate
"near-far" problems for some network connectivities, such as a star, it probably will not help the

case of a dense network [Turin84).

3.2.3 Decrease Interference to Other Systems

Different radio systems are generally assigned different frequency bands. However,
interference between networks can occur just as adjacent channel interference can occur between
unique channels in point-to-point networks. Therefore, reducing transmit power in general

should help reduce the interference to other systems.

Johnson describes an operational hf radio system that was specifically designed with
dynamic power control to reduce interference to other systems [Johns78]. The system linked
together oil rigs in the North Sea to the European mainiand. Dynamic power control allows the

system to reduce the interference caused to existing European radio systems.

3.2.4 Decrease Probability of Detection/Interception

The detection and interception of military communications are an important part of

electronic warfare (EW). Therefore, military communications systems desire to radiate with as

little rf power as required to communicate. Dynamic power control allows the rf power level to

o
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be as small as possible and still support communications in a changing rf environment.

3.2.85 Decrease Electrical Power Demands

Many radio systems, especially mobile radio systems, operate using battery and/or
solar power. The use of dynamic power control would allow these systems to operate for longer

periods than if they just operated at peak rf power.

Satellite networks are often power limited. Therefore, routing based on a metric func-

tion of the transmit energy per bit, congestion and delay, and satellite battery status has been

‘proposed for use in the Multiple Satellite System (MSS) [Qual 87].

Dynamic power control has been analyzed [Longh75) [Engla79] [Tebbe84] and tested
[Harri84] to gain more channels in repeater satellites. The frequency used for satellite down links
is attenuated by precipitation so that existing satellite systems always transmit with an extra 3 to
6 dB of margin to overcome the rain attenuation. At any given period of time, however, most
links are not being degraded by rain. Therefore, dynamically reducing the rf margin on clear sky
links, i.e., selectively increasing the transmit power for the down links with rain at the earth sta-

tion, provides additional rf power that can be used to operate additional rf channels.

3.2.6 Increase RF Power Margins

Operation of f links at maximum power eliminates one dimension of adaptivity that
radio systems could have. For example, suppose that a radio system could lower the rf power on

all of its links by some amount. This additional rf power could be used to provide for new or ad-
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[ ditional communications services. For example, higher priority packets could be transmitted at a ‘
; higher power level than lower priority packets, thus preempting the lower pricrity packets in the
[t rf channel [Bebee88). Traditionally, the way to provide precedence in an Aloha rf channel is to
| adjust the position of packets in the different PRU transmit queues. These traditional schemes do
| not provide a way for higher priority packets in one PRU to preempt lower priority packets at
| other PRUs. However, the adjus:ment of power based upon packet priority could be a workable
scheme for PRNETs with FM capture. (Remember that with FM capture, a receiver will general-

ly receive the strongest of several overlapping signals, although the issue is complicated by the

packet arrival order and preamble processing mechanisms.)

3.2.7 Decrease RF Environmental Impact

RFs between the frequencies of 100 MHz and 100 GHz are considered to be 1
microwave radiation. American National Standards Institute (ANSI) standards provide

guidelines on the acceptable limits of human microwave exposure. This limit is 10 mW/c.:n'n2 for

periods of 0.1 hour or more. Note that a 0.1 watt microwave source is safe at a distance of a cen-
timeter or more from the radiating sourc+, while a 1 watt source is only safe at a distance of 3 or
more centinieters from the radiating source [Weigl73). Therefore, it is conceivable that a hand
held radio system might operate at two power levels, depending upon whether it was sitting on a

shelf or desk or whether it was being held or carried by a person.

The comoination of electromagnetic interference problems affecting computer equip-

ment as well as the inconclusive, but growing, evidence of medical problems from

g
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electromagnetic waves other than microwave, suggest that it would be a prudent communications

system design practice to limit transmit power to just that needed for communications [Jenki88].

3.3 How To Perform Dynamic Power Control in General

Dynamic power control can be implemented as either a closed or open loop system.
An open loop system assumes that the two one-way links between radio nodes are related so that
the measurement of the signal in one direction can be used to adapt the mnsmission of the signal
going back the other way. This assumption may be poor when the problem is caused by jamming
or interference. A closed loop system does not assume that the two one-way links are related,

thereby requiring that the measurement be fed back to the transmitting radio node for use in

adapting its power level.

If an rf signal is not received correctly, a receiver may be able to determine that the rf
signal was generated by one of the transmitters in the radio system, but the receiver will not be
able to identify the transmitter. (This assumes that the rf signal is not physically unique in some
identifiable way such as in frequency or spread spectrum code used.) Therefore, connectivity at
maximum power will probably have to be measured directly and cannot be predicted based upon
the connectivity at lower power levels. Conversely, however, & system may be able to predict the

connectivity of lower power levels based upon the connectivity at higher power levels.

Some full duplex microwave links are able to dynamically adjust the power in the face
of fast fades [Ramir86) through the use of real-time measurement being fed back to the transmit-

ter. Other channels have longer delays, so that they cannot respond fast enough to operate
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through fast fades. Therefore, power control will only work for slow fades, such as occurs with

rain attenuation or some Rayleigh fading.

The link quality measurements required can vary from the very simple to the com-

plex. The link quality measurements will be similar to those described in Section 2.3.2.

3.4 How To Perform Dynamic Power Control in Common-Channel PRNET's

Several generations of the DARPA packet radios have had the ability to dynamically
control power. However, this capability has been unused because of a lack of network control al-
gorithms. The lack of network control algorithms arises from the fact that the links between
PRUs are not independent. In addition, some analysts had a conceptual problem that all of the
PRUs had to adaptively change their power levels in unison, i.e., the network power control algo-
rithm had to determine the single optimum transmission power to use throughout a PRNET

instead of allowing each PRU to pick its transmission power on a packet-by-packet basis.

Shacham and Westcott, in their overview of future research areas in packet radio, ex-
amined the dynamic setting of radio parameters. They concluded that, "More research is needed

to provide an adaptive power control under realistic operating conditions" [Shach87).

This section describes some ways that dynamic power control can be used by existing
link layer protocols described in Chapter 2, for common-channel PRMNETs. Chapter 5 will
describe a network layer protocol that can explicitly take advantage of power control to optimize

the network connectivity.

Y o -~ Y
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PRUs will still need some sort of broadcast mechanism and return feedback path to
determine neighbor connectivity. PRUs will always have to broadcast a few times at their
greatest possible power level to determine the possible connectivity, even if the PRUs will not
normally use their greatest possible power level. Depending upon the type of rf measurements
available, the PRUs can then either predict what the connectivity will be like at lower povier
levels or the PRUs can use a broadcast mechanism to determine neighbor connectivity at several
power levels. The minimum power required to reach each neighbor with some minimum level of
accepiability will then be stored in the PRU neighbor tables. Note that the minimum power re-
quired to reach each neighbor with some minimum level of acceptability will probably include an

rf margin to provide protsction against fluctuations in environmental noise and fading.

Depending upon whether the power control is implemented as an open or closed loop,

the actual transmit powers may or may not have to be calibrated.

Figure 3-2 shows an example 10 node partially connected PRNET within a 50-by-50

kilometer square. If we use the threshold hearing model to represent the rf channel and power

propagation loss, Table 3-1 shows a portion of several possible Neighbor Tables for PRU-10. |
The threshold hearing model assumes that if two PRUs are closer than a certain threshold dis-
tance (or transmission range), then they are able to communicate (without errors) with
probability 1. Otherwise, if the two PRUs are farther apart than the threshold, they are unable to
communicate, i.e. will communicate with probability 0. The maximum PRU transmission power
level is assumed tn only allow PRUs to transmit up to 10 kilometers away. The transmission at-

) tenuations shown in Table 3-1 were obtained using the Free Space Law.

|
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Max Transmission Range (30 km)

Figure 3-2. Example 10 Node Partially Connected PRNET




Neighbor PRU Distance (km)
1 24.19
4 21.26
6 18.97
7 2.83
8 29.53

A. Neighbor Table When Using a Constant Transmit Power

Neighbor PRU Distance (km) ?rgrennur;‘wgznpg:’vgr)
1 24.19 1.9
4 21.26 3.0
6 18.97 4.0
7 2.83 20.5
8 29.53 0.1

B. Neighbor Table When Using Continuous Dynamic Transmit Power Control

Good fink at following ( dB)
Neighbor PRU Distance (km) | attenuations from max power
0 3 9 27
1 24.19 Y N N N
4 21.26 Y Y N N
6 18.97 Y Y N N
7 2.83 Y Y Y N
8 29.53 Y N N N

C. Neighbor Table When Using Discrete Dynamic Transmit Power Control

Table 3-1. PRU-10’s Neighbor Tables for 10 Node PRNET in Figure 3-2
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The current PRNET routing algorithm, e.g., minimum-hop routing, can continue to
run as before without being concemned that power contro! will be used at the link level. There- @
fore, when forwarding packets, the PRUs will still look up the destination PRU in the routing

table to determine the next PRU, and then look up the next PRU in the neighbor table to learn

what transmission parameters to use. The difference is that transmit power is now one of the

transmission parameters and packets will be transmitted with just enough power to reach the next

PRU. If the transmission is a multi-cast transmission, then the transmit power that should be

used is the maximum of all of the minimum transmit powers needed to reach each of the in-

dividual PRUs. A multi-cast is a single transmission with several next destination PRUs as

compared to the normal uni-cast case with a single next destination PRU [Caple87] [Liu81].

This simplification does not take into account passive acknowledgments. Because a

d N

transmission is expected to reach both the previous and next PRUs, a relay PRU should look up ™

both PRUs in the neighbor table and transmit with the maximum of the two listed transmission

powers. Naturally, the source PRU would only look up and use the power required to forward a

packet on to the next PRU, and the destination PRU would only look up and use the power to |
send an active acknowledgment back to the previous PRU. Similarly, if a relay PRU were to
send an active acknowledgment, it would only look up and use the power required to reach the

previous PRU.

In addition, if the PRUs normally do not transmit at maximum power. then dynamic
power control gives them one extra parameter that can be varied when retransmitting unack-

nowledged packets. As discusszd in Section 2.3.3, when a packet has to be retransmitted, it

§
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means that either the previous packet was interfered with, part of the PRNET is congested, or the
link quality has decreased. As more retransmissions take place, it becomes more likely that the
problem is a decrease in the link quality. Therefore, at some point, the transmitting PRU will

want to start transmitting the retransmissions at higher and higher power levels.

Taken together, these few simple modifications to existing PRNET algorithms would
support power control within existing PRNET protocols. Therefore, minimum-hop routing could

be performed with power control.




4. PREVIOUS SPATIAL REUSE ANALYSES d

4.1 Overview of Previous Spatial Reuse Analyses

As discussed in Section 1.4, spatial reuse is the separation of PRUs in space such that

some PRUs may transmit at the same time without destructively interfering with each ~*..er. The

previous spatial reuse analytical work tried to optimize either the access protocol or the network

topology and routing {Klein87].

Several papers examining the maximurn optimal spatial reuse of networks have been
published. Nelson and Kleinrock examined random and regular network topologies and showed

that the maximum probability of transrission will be upper bounded by 0.9278/N where N is the

P -

network degree, i.c., average number of neighbors per PRU [Nelso83]. Silvester derived an algo-
rithm to determine the optimal channel scheduling [Silve82]; and Nelson and Kleinrock
developed an optimal TDMA protocol, called spatial TDMA, that assigned TDMA transmission

rights to multiple PRUs during each time slot in a manner to provide for the greatest possible spa-

tial reuse without interference [Nelso85).

4.2 Optimizing Spatial Reuse Through Power Control

The remainder of the previous analytic studies examined how to best modify the net-
work topology through power control to improve spatial reuse. This analysis examined the
following question first raised by Kleinrock, "Is it better for a route to take many short hops, or a

few long ones?" [Klein75) If a small range is used, many hops are needed but there is little con- @
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tention for the channel in each hop because only a few other PRUs will be within transmission
range of the receiver. If a long range is used, only a few long hops are necessary, but the trans-

mission for each hop must contend with much more interference.

4.2.1 Spatial Reuse in Regular Networks

Kleinrock’s original paper indicated that there was an optimal range that should be
used to minimize delay for a network with a continuum of nodes and the ability to arbitrarily ad-
just communications range (power). If the range is shorter, the number of hops will grow to
infinity. If the range is longer, each transmission must contend with much more traffic and the

throughput is decreased.

Akavia and Kleinrock [Akavi79] and Silvester and Kleinrock [Silve83a] [Silve80] ex-
amined regular topologies, such as rings and Manhattan grids. The basic results once again
indicated that (as expected) the optimal transmission probability to maximize slotted Aloha per-
formance is p = 1/d, where d is the average degree. They also found that the total network
throughput for many types of networks, such as the Manhattan grid, is proportional to the square

root of the number of nodes in the network.

4.2.2 Spatial Reuse in Random Networks

Of more interest to this dissertation is the previous research of spatial reuse in random
networks. This work determined the optimal transmission ranges (or average degree) that would

optimize network performance. This work has progressed through several refinements of the
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model and routing/transmission strategy since the original work by Silvester and Kleinrock d

[Silve80] [Klein78].

The basic model assumes that the channel access protocol is slotted Aloha with fixed
length packets equal to the time slot, i.e., the radio propagation time is assumed to be zero. The
PRUs are assumed to be distributed in a plane as a Poisson process. The traffic is assumed to be |
homogeneous and each node is ready to transmit with probability p in any slot (heavy traffic
model). It is assumed that omni-directional antennas are used, so that rf signals propagate out

equally in a circle in a plane. The threshold hearing model is used to simulate the rf channel and

power propagation loss. Narrow-band channel signaling is assumed to be used with zero capture. |

|
Therefore, if two transmissions overlap at « PRU during a single time slot and that PRU is within i
the threshold distance of both transmitting PRUs, then the two packets are destroyed (interfered |

with) with probability 1. It is also assumed that all nodes transmit with the same range and that q

!

this range can be adjusted with infinite precision to optimize the network performance.
The analysis included a study of the myopic operation of several different

routing/transmission strategies to find the single hop throughput, and then normalized the result

to find the appropriate end-to-end throughput.

Ogier has developed a concise comparison between myopic and shortest path routing
algorithms. Myopic schemes are based on forward progress, optimize only the next hop, and re-
quire knowledge of the destination’s direction and neighbor’s positions. Shortest path schemes
use a link metric based on local information, optimize over all possible paths, and do not require

position data, but do require the cost, i.e., distance, to each neighbor. Therefore, any shortest

q
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path scheme with metric m(i,j) can be converted to a myopic scheme by having PRU-i choose the

PRU-j that maximizes forward progress divided by m(i,j) [Ogier87).

Basically, the analytic approach was to compute the expected progress toward the des-
tination for an arbitrary transmission, as shown in Figure 4-1, where PRU-T transmits a packet to
PRU-N on its way to the final destination PRU-D. The forward progress L of a successful trans-
mission toward the destination is defined to be:

L=(X-X")
‘The progress term ( X - X' ) varies depending on the routingAransmission strategy used and on
the assumption made conceming what to do about PRUs that are either disconnected or else have
no neighbors in the forward direction that can relay the packet toward the destination. In general,
if we assume that the destination, PRU-D, is a far distance away, then W is a good approx.mation

of the forward progress L.

The probability of success, s, of a single transmission is:
s=p(l-p) e'Pd(l-e’d) '
where,
(1) p = the probability that the source PRU, PRU-T, transmits
(2) (1 - p) = the probability that the relay PRU, PRU-N, is not transmitting
3)eM = the probability of no interference from other PRUs around PRU-N

(4) (1 - ¢9) = the probability of finding a PRU-N in the forward direction to the final
destination, PRU-D
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Figure 4-1. Forward Progress in a Random PRNET
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The optimal transmission probability, p, is about 1/(d + 1), where (d + 1) accounts for
the interference the source node causes to itself when it transmits. The expected forward
progress, z, of an arbitrary transrnission is:

2z = Lesg

Several myopic routing/transmission strategies have been examined, including: Most
Forward with Fixed Range (MFR), Nearest with Forward Progress (NFP), Most Forward with
Variable Radius (MVR), and Least Area Routing (LAR). Figure 4-2 shows a comparison of the
transmission strategies. Throughput simulation curves for these myopic strategies are shown in

Chapter 6, where they are compared to the performance of a myopic version of LIR, presented in

Chapter S.

MFR is a myopic version of minimum-hop routing without power control, i.e., similar
to what is implemented in most of today’s multiple-hop operational PRNETs. In MFR, the pack-
et is sent to the PRU-N within the fixed transmission range which maximizes the forward
progress. MFR has been analyzed using several slightly different geometrica! simplifications and
either allowing or not allowing backward progress. Kleimock and Silvester [Klein72] [Silve80)
found that the optimal transmission range should be that which results in an average degree of
5.89 (or about 6). They also discovered that the performance is fairly insensitive to using a larger
value, but very sensitive to using a smaller value, which increases the chances of not finding a
PRU in the forward direction. Takagi and Kleinrock improved the model and found that the op-

timal average degree should be about 8 [Takag84]. Hou and Li performed a more precise
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Figure 4-2. Comparison of Previous Myopic Transmission Strategies
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geometrical analysis and found that an average degree of about 6 proviies optimal PRNET per-

formance [Hou86] [Hou85a] {Hou84).

Hou and Li introduced MVR, which is a myopic version of minimum-hop routing
with power control. MVR is similar to MFR except that once the repeater PRU has been found,
the source PRU adjusts its transmission range to just that needed to reach the repeater PRU

[Hou86) [Hou85a) [Hou84]. MVR was shown to improve PRNET performance over MFR.

Hou and Li also introduced NFP, which is not similar to any operational PRNET rout-
ing metric.” NFP chooses the closest PRU in the forward direction and adjusts the transmission
range to just that needed to reach the chosen PRU. NFP was shown to improve PRNET perfor-

mance over MFR and MVR [Hou86] [Hou85a] [Hou84].

Hajek used a measure other than forward progress to study the network performance.
This measure is called "efficiency” and is defined to be the expected progress divided by the area
covered by the transmission. In general, the efficiency will provide the best progress at the least
interference cost, because the expected interference is proportional to the area of transmission.
He found that the optimal value for the average degree is about 3. If there is no PRU in the for-
ward direction at that small a degree, then the transmission range is increased until a PRU is

found in the forward direction. We will call his myopic routing strategy Least Area Routing

*  The closest proposed routing metric for an operational PRNET is the routing metric

proposed for MSS, which is a function of transmit power, congestion and delay, and
satellite battery power [Qualc87].
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(LAK). Hajek showed that LAR improves PRNET performance over MFR, MVR, and NFP @

[Hajek83].

!
i
Chang and Chang modified the model to include the use of directional antennas in- |
|

stead of omni-directional antennas. The network performance was improved as expected,

because the use of directional antennas eliminates much of the interference [Chang84].

Takagi and Kleinrock modified the model to use CSMA instead of slotted Aloha. The
network performance using CSMA and MFR routing was improved, but only slightly (16%) be-

cause of the hidden terminal problem [Takag84].

Takagi and Kleinrock modified the model to include capture. The network perfor-
mance using MFR routing was improved by 36 percent for a similar optimal average degree

[Takag84]. Hou and Li also examined capture with the MFR and a more realistic channel model,

Y &~

and discovered that capture improves performance through the reduction of interference

[Hou85a] [Hou85¢].

Hou and Li also relaxed the model to examine a more realistic charinel model, i.e.,
other than the threshold hearing model. They compared the original MFR and NFP along with
two variants, M-MFR and M-NFP, which took the probabilistic hearing model in account; and
found that the M-NFP provided better performance than NFP, MFR, or M-MFR. They also
found that the more realistic channel model reduced the maximum possible normalized end-to-

end throughput due to the additional interferences [Hou85b) [Hou85a}.

i
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Sousa and Silvester diverged from the previous work to examine spatial reuse in
spread ,épectrum systems [Sousa85). Their propagation model determined the interference con-
tribution at a receiver from every other transmitting PRU in the network. This model took into
account the attenuation of signal with distance as a function of some power law, e.g., the Free
Space Law is a square law and the Plane Earth Law is a fourth power law. Knowing the inter-
ference at a PRU along with the signal strength from the transmitted packet (from the same
propagation model) allowed them to determine the probability that the s/n ratio was above the
threshold required for successful reception and, hence, the probability of a successful transm.
’.;sion. The optimization is no longer "what transmit range should I use” but rather "toward which
PRU should I direct my transmission." They found that for a spread spectrum system, the op-
timal strategy is to address the packet such that there are 1.3 VK PRUSs between the transmitter

and the addressed repeater PRU, where K is the multiuser capability of spread spectrum systems

[PursI87].

4.3 Problems with Myopic Strategies

The existing analytic routing/transmission strategies have shown the importance of
power control in providing spatial reuse and increasing the performance of the common-channel.

Unfortunately, these myopic strategies, although useful fcr analysis, are not implementable in

real operational networks.

Because the myopic strategies are performing a purely local routing decision, it is pos-

sible that they will choose a local optimal choice that will result in being unable to ultimately
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forward packets on to the destination even though a physical route really exists. For example, d
Figure 4-3A shows an example PRNET in which the MFR, MVR, NFP, and LAR strategies fail |
because PRU-T will always choose PRU-Y to try to route toward PRU-D even though a physical ]
route exists from PRU-T to PRU-D. Figure 4-3B shows an example in which NFP and LAR will %
cause looping between two PRUs rather than ultimately routing a packet on to its intended des- |

tination,

These transmission strategies depended upon geographic information which often is
not known in real operational PRNETs. Hou proposed that the PRUs could obtain this informa-
tion from the Global Positional Satellite (GPS) system [Hou85d] [Hou85a). Unfortunately,
problems still exist even if this information is known because the variable nature of the rf channel ¢
as presented in Section 2.2.1.2. A PRU could require more power to reach the closest PRU in the

forward direction than it does to reach the farthest PRU in the forward direction. This example

Y &)

could easily occur if the closest PRU were in a gully and the farthest PRU were on top of a hill.

Therefore, the NFP interference assumptions would be violated if NFP chooses the closest PRU.

4.4 Conclusions

Although tirese myopic routing/transmission strategies cannot be implemented in real
operational systems, their analysis does point out several important design ideas. in particular,
the analyses indicate that network performance can be improved through spatial reuse from

power control.
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PRU-T generates a packet destined
for PRU-D.
2 PRU-T forwards packet to PRU-Y
3 PRU-Y discards packet since it
! cannot forward it on. N

A. Dead-end Route Problem

T

Step NFP, & LAR Actions
PRU-T generates a packet destined

1
for PRU-D.

2 PRU-T forwards packet to PRU-Y

3 PRU-Y forwards packet to PRU-T

+ A loop of steps 2 & 3 ensues

B. Packet Looping Problem

4

Figure 4-3. Problems With Myopic Transmission Strategies
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As interference is reduced, either through capture effects or directional antennas (and q
also through spread spectrum), the analyses indicate that the routes chosen by best routing
strategies begin to converge to those chosen by MVR. This implies that designing a routing
protocol which directly tries to minimize interference is more useful for narrow-band systems

than for wide-band systems.
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5. LEAST INTERFERENCE ROUTING

5.1 Least Interference Routing Overview

This chapter discusses a new routing protocol called Least Interference Routing (LIR).
The LIR protocol has been designed to be an operational protocol in which each PRU is allowed
to make a decision on what per-packet transmit power level to use and what PRU to select as the

next PRU on the route to the final destination.

Notice that a myopic version of LIR would be to optimize the forward progress
divided by the number of potential interferences caused. Therefore, LIR is similar to Hajek's
transmission strategy LAR." However, LIR should have better perfermance than LAR because
LIR tries to minimize the actual interference instead of the area covered by the transmission,

which is an average nicasure of interference.
The LIR protocol is composed of three operations:
(1) alocal calculation of the ﬁotential destructive interferences across each link,

(2) the use of the potential destructive interferences as the routing metric to be minimized
in a shortest path routing algorithm, and

(3) the specification of the per-packet transmission strategy at each PRU.

*  Hajek said that "It would be interesting (and it appears difficult) tc find a dynamic
transmission radius rule which minimizes [sic, should be maximizes] the mean forward
progress divided by the mean number of stations in transmission range, other than the
intended receiver." [Hajek83) Notice that Chapter 6 will show that this is exactly the
myopic version of narrow-band LIR.
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LIR allows great flexibility in how to perform each operation, thus allowing im-

plementation in a variety of radios and radio networks. q

5.2 Calculating the Potential Interference For a Given Transmission

As discussed in Section 2.2.1.6, the potential interference is dependent on the prob-
ability that two rf signals overlap, as well as on the conditional probability that the two rf signals
interfere with one another given that they ovcrlap. The probability that the two f signals overlap
in time at a PRU is a function of the channel access scheme used. At one extreme in common-
channel random-access PRNETSs is Aloha, and at the other extreme is CSMA in a single-hop
PRNET. Although CSMA greatly reduces the probability of overlap over Aloha in single-hop ;
networks, it provides a much smaller improvement for multiple-hop networks because of the hid- ]
den neighbor problem [Tobag74]. Because most of the operational PRNET's are multiple-hop, e
we will assume that the overlap probability is fairly constant and not consider it further.”

The potential interference that a PRU-i transmission causes to another PRU’s (PRU-j)
transmission, given that the two transmissions overlap in time at a third PRU (PRU-k) is depend-

ent upon whether the channel signaling is narrow-band or wide-band and upon the amount of

capture that the signaling provides. (Note that the potential interference for the special case of

The assumption that the overlap probability is fairly constant may be a bad assumption
for networks using CSMA. For example, it may be a poor decision to adjust
transmission range to just reach a PRU in a fully connected PRNET, and thus create
hidden neighbors instead of transmitting at full power so that there are no hidden
neighbors.
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i =k is independent of the channel signalling, because we are assuming that each PRU has only a
single g'nt\enna, transmitter, receiver, and modem and thus can either transmit or receive, but not

both at the same time.)

At one extreme is a narrow-band system with zero capture. In this system, the poten-
tial interference calculation should include every PRU that could hear a transmission. At the
other extreme is a wide-band system using transmitter-directed codes. In the wide-band system,
only one PRU will be transmitting using that code, and therefore, the receive listening on the cor-
rect transmitting PRU code should have perfect capture. Thus, the potential interference

calculation would only include the transmitting PRU and the receiving PRU.

Section 2.3.2 listed many different measurements that can be used to determine link

quality. Similarly, there are many different ways to use these measurements to predict the poten-

tial interference across each link.

A very simple idea would be to consider the potential interference across a link to be
either 1 or 0, based upon whether the quality of the rf link between PRU-i and PRU-k was con-
sidered good or bad. If the link quality were good from PRU-i to PRU-k, then the potential
interference = 1; otherwise, the potential interference = 0. (Note that the potential interference

for the special case of i = k is 1, because we are assuming that a PRU cannot transmit and receive

at the same time.)

Figure 5-1 shows the example 10 node PRNET discussed in Section 3.4. If we as-

sume the threshold hearing model and that the PRUs have the same maximum transmit power
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Max Transmission Range (30 km)

10

Figure 5-1. Example 10 Node Partially Connected PRNET




level as before, then Table 5-1 shows that the potential interference is reduced when PRU-10 f

transmits to each of its neighboring PRUs using both continuous and discrete dynamic power

control.

A multi-valued link quality measurement could be used to calculate a multi-valued
potential interference measurement. For example, the s/n ratio between PRU-i and PRU-k could
be measured as part of the link quality measurement. If the s/n ratio is above one threshold, then

the potential interference could be set equal to 1; if the s/n ratio is above another threshold, then

the potential interference could be set equal to 1/2; else the potential interference could be set

equal to 0.

Once a particular method of measuring the potential interference hus been determined,

then PRUs will use this method to calculate the potential interference to each PRU in the PRNET |

at different transmit power levels. Then, each individual potential interference can be summed to

compute the total potential interference that a PRU causes when it transmits, as discussed in Sec-

tion 2.2.1.6.

Note that operational PRUs do not have a continuum of possible transmission power

levels. Instead, they usually bave a few possible discrete transmission levels. Also, operational

PRUs will leave an rf margin, of 3 dB, for example, to account for unpredictable changes in the

environment. If a PRNET is operating in a line-of-sight (LOS) ground-based mode, then a PRU
will typically need to have a dynamic transmission power range of about 40 to 45 dB to provide a

transmission range of from 50 meters to 10 to 15 kilometers using the Free Space Law.
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Neighbor PRU Distance (km ) e
1 24.19 6
4 21.26 6
6 18.97 6
7 2,83 6
8 20.53 6

A. Neighbor Table When Using a Constant Transmit Power

65

Neighbor PRU |  Distance (km) :‘;:,"";::“pg::) lmm
1 24.19 1.9 5
4 21.26 3.0 4
6 18.97 40 3
7 283 205 2
8 2053 0.1 6

B. Neighbor Table When Using Continuous Dynamic Transmit Power Control

Good link at following (dB) Afttenuvation Potential

Neighbor PRU | Distance (km) | attenuations from max power| | (dB) from iy
erence
0 3 9 | 27 max powar
1 24.19 Y N N N 0 6
P 21.26 Y Y N N 2 4
6 18.97 Y Y N N o 0
7 2.83 Y Y Y N 27 )
8 29.53 Y N N N

C. Neighbor Table When Using Discrete Dynamic Transmit Power Contro!

Table 5-1. PRU-10’s Neighbor Tables for 10 Node PRNET in Figure 5-1
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Any two PRUs that can correctly transmit and receive packets between each other will
normally exchange link status packets to keep track of the status of their common rf channel (or
link) Each PRU normally maintains this information in its Neighbor Table. The implementation
of LIR means that PRUs will need to measure/predict the potential interference betwcen themsel-
ves at different transmit powers, exchange this information in their link status packets, and store

this information in their Neighbor Tables.

§.3 Calculating LIR Routes

Once the potential interference has been found at multiple power levels, then PRUs
exchange interference measurements to calculate the least interference routes. The PRUs can use

any shortest-path routing algorithm discussed in Section 2.4.

If the distributed incremental routing method is used, then the routing level update for
any given PRU-i would be:
PRU-i routing level to PRU-i=0
PRU-i routing level to every other PRU-m in network =
minimum for all neighbors k {

neighbor PRU-k’s routing level to PRU-m +
amount of potential interference PRU-i causes when it transmits to PRU-k)

For example, Table 5-2 shows the LIR and Minimum-Hop routing tables for the 10
node PRNET in Figure 5-1. We see that the Minimum-Hop routes always have the same or

greater interference than the LIR routes. The sum of the interference over all routes was 726 for

Minimum-Hop and 657 for LIR, while the sum of the total hops over all routes was 134 for
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& @ |

Dsstination PRU Potential Interference Route
1 6 10-1
2 12 10-1, 19, 9-2
3 12 10-6, 6-3
4 4 104
5 12 10-1, 16
6 3 10-6
7 2 10-7
8 6 10-8
9 9 10-1, 1-9

A. Minimum Hop Routing Table

Destination PRU Potential interference Route
1 6 10-1
2 11 104, 4-9, 9-2
3 12 10-6, 6-3
4 4 104
5 9 10-6, 6-5
6 3 10-6
7 2 10-7
8 6 10-8
9 8 104, 49

mmmmm AT A Ay

B. Least Interference Routing Table

Table 5-2. PRU-10"s LIR-nap and MinHop-nap Routing Tables

for 10 Node PRNET in Figure 5-1




MinimumHop routing and 138 for LIR. (We will call these variants of LIR and Minimum-Hop
routing “"LIR-nap" and "MinHop-nap," respectively, to indicate that they use power control but

do not have hop-by-hop acknowledgments.)

Note that LIR will not be an optimal routing algorithm. Such an optimal algorithm
would have to take traffic pattems into consideration and would probably have to perform some
sort of load splitting. Unfortunately, calculating the optimum routing solution to reduce the total
network interference is difficult and requires a priori knowledge of the expected traffic load. Al-
though LIR may not generate the optimal network routing solution, it is an important algorithm
‘because of its case of implementation and its embodiment of the concept of reducing interference

to improve network performance through increased spatial reuse.

5.4 The LIR-Based Transmission Strategy

When a PRU has a packet that it intends to forward to a destination PRU, that PRU
will look up the destination PRU in its Network Routing Table to deteninine the next PRU in the
route to the destination. (Note that the forwarding PRU could be either the packet source PRU or
a relay PRU on the route from the source PRU to the destination PRU.) Currently, PRUs look in
their Neighbor Table to determine the transmission parameters to use. If the PRU can support
dynamic power control, then the dynamic power control methods listed in Chapter 3 can be used.

Otherwise, the PRU transmits the packets without power control.
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5.5 LIR and Hop-by-Eop Acknowledgments

Because an rf chapnei has a noisy environment compaied to wire-lines, PRNETs
generally use some sort of hop-by-hop acknowledgment with hop-by-hop retransmissions to
provide a high degree of probability that a packet will be received by the next PRU in a route, as

discussed in Section 2.3.3.

If LIR were implemented as described earlier in this ~hapter, then passive acknow-
ledgments coul-: often fail when PRUs are relaying packets on to their destination PRUs. This
fuilure occurs when the next PRU in a route transmits wit a power level that is too low to be
received at wie previous PRU. Therefore, the next PRU should transmit with the minimum power
required so that a packet can be received at both the next PRU in the route and at the previous
PRU in the route. Figure 5-2A shows an exaraple of this passive acknowledgment problem when
a PRU in a sp wse section transmits a packet to a destination PRU in a dense section of the
PRNET. Using LIR as defined above, PRU-X transmits a packet to PRU-X and PRU-X trans-
mits the packet to PRU-Y with a power level that is too small to reach back to PRU-T. Figure
5-2B shows the additional interference if PRU-T transmits an active acknowledgment back to
PRU-T. Figure 5-2C shows the fewer additional interierences that result if PRU-X has to trans-

mit with enough power (including marginj tc support a passive acknowledgment back to PRU-T.

Note that, in special cases as shown in Figure 5-3A, when the PRU at the edge of the
dense area has to transmit at a high power level for passive acknowledgmen:., there is a good

chance that thc destination PRU will receive the packet. However. it may still be advantageous
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Source Dest.
@ @
T D

Source .
"T active ack = xmt ‘D
N ®

B. PRU-X transmits an [ Event [Interference

active acknowledgment; Xt 3
total interference = 11 active ack 8
o’ ®

Source X Y Dest.
® —— @— @ ®
T passive acknowledgment D
\ ®

C. PRU-X transmits with enough power to perform
passive acknowledgment; total interference =8

Figure 5-2. Including Passive Acknowledgments with LIR
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Source xmt 1 X Y Destination
T ¢— O ® o
xmt 2; passive ack

A. Destination PRU-D can hear PRU-X's
passive acknowledgment back to PRU-T.

/ ° 0\ oy

xmt 2; passive ack xmt 3 active ack

Xmt_|Interference Tota! Interference on :
1 % Route from PRU-S J
2 g to PRU-D = 16 d
— - :
——- B. PRU-D active acknowledges upon ;
hearing PRU-T's transmission.
@
Destination

Source xmt 1 X Y
T =g

xmt 2; passive ack / xmt 4, active ack
Y

Xmt |Interference
\ Total Interference on

3 2 /| Route from PRU-T <
3 4 to PRU-D = 15

"~~~ C. PRUD walts to active acknowledge
until it hears a packet intendasd for it.

Figure 5-3. Including Destination PRU Active Acknowledgments with LIR




i

72

for the packet to be forwarded to the destination PRU using several small hops to reduce the total
amount of PRNET performance degrading interference. For example, Figure 5-3B shows the
number of potential PRNET performance degrading interferences when the destination im-
mediately active acknowledges upon hearing a packet addressed to it, versus the smaller number
shown in Figure 5-3C when the destination waits to active acknowledge until it receives a packet

that is addressed to it as the next PRU.

The LIR protocol can be easily adapted to support passive acknowledgments by
modifying the routing interference metric. If the distributed incremental method is used, the rout-
ing level update for any given PRU-i in the PRNET would be:

PRU-i routing level to PRU-i=0

PRU-i routing level to every other PRU-m in network =
minimum for all neighbors k (
neighbor PRU-k’s routing level to PRU-m +
potential interference when PRU-i transmits to PRU-k +
number of additional interferences, if any, that occur if PRU-k is a relay PRU and
performs a passive acknowledgment or PRU-k is a destination PRU and per-
forms an active acknowledgment )

For example, Table 5-3 shows the routing tables for this variant of LIR and
Minimum-Hop routing for the 10 node PRNET in Figure 5-1. We see that the Minimum-Hop
routes always have the same or more interference than the LIR routes. The sum of the inter-
ference over all routes was 1262 for Minimum-Hop and 1168 for LIR, while the sum of the total
hops over all routes was 134 for Minimum-Hop routing and 140 for LIR. (We will call these
variants of LIR and Minimum-Hop routing "LIR-ap" and "MinHop-ap," respectively, to indicate

that they use power control and support hop-by-hop acknowledgments.)

o
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Destination PRU | Potential interference Route
1 14 10-1
2 14 10-1, 1-9, 9-2
3 16 10-6, 6-3
4 11 10-4
5 18 10-1, 1-5
6 5 10-6
7 4 10-7
8 12 10-8
9 15 10-1, 1-9

A. Minimum Hop Routing Table

Destination PRU Potential Interference Route
1 14 10-1
2 13 10-4, 4-9, 9-2
3 16 10-6, 6-3
4 1 10-4
5 13 10-6, 6-5
6 5 10-6
7 4 10-7
8 12 10-8
9 13 104, 4-9

B. Least Interference Routing Table

Table 5-3. PRU-10’s LIR-ap and MinHop-ap Routing Tables

for 10 Node PRNET in Figure 5-1
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Note that the distributed incremental method does not calculate the optimal routes for
passive acknowledgments. Figure 54A shows an example route created using the routing level

update listed above. Figure 5-4B shows that there are better routes to use to eliminate inter-

ference.

The optimum route shown in Figure 5-4B can be obtained by modifying LIR to ex-
change information about power levels with the routing tables. If a given PRU, say PRU-i, has N
different power levels, then that PRU can logically be considered to be N different PRUs, and
any shortest path routing algorithm can be used. We will call an actual PRU-i transmitting at the
gm transmit power level the logical PRU-i,g. If the distributed incremental method is used, then
the routing level update for any given PRU-i in the PRNET would be:

PRU-i routing level to PRU-d =
minimum for all power levels g ( PRU-i,g routing level to PRU-d )

PRU-i,g routing level to PRU-i =
number of potential interferences when PRU-i transmits at the g‘h power level

PRU-i,g routing level to every other PRU-m in network =

minimum for all neighbors k (
neighbor PRU-k,h’s routing level to PRU-m (where power level h 2 power level g) +
potential interference when PRU-i,g transmits to PRU-k,h )

Although we presume that the difference between the approximate calculation per-
formed by the distributed incremental method and the calculation performed by the optimal
distributed incremental method is small, we did not compute both routing types for comparison.

5.6 LIR and Networks Without Power Control

The LIR protocol has been designed to work in PRNETS containing PRUs that can

R
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B. An Optimal LIR Route With Acknowledgments

Figure 5-4. Comparison of Approximate to Optimal LIR Routing with Acknowledgments
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change their transmit power levels on a packet-by-packet basis. However, LIR will still work for
PRNETS with fixed transmit power levels. The only two changes to LIR are: (1) the potential
destructive interference is measured at a single transmit power level instead of multiple levels,
and (2) the LIR transmission strategy does not have to specify the transmit power level. In this

case, LIR will route packets through the less dense PRNET areas, such as the edges.

In general, when there is no power control, the LIR routes are usvally the same
whether acknowledgments are considered or not. Therefore, we will only examine the variant of

LIR without power control and without acknowledgmerts.

Table 5-4 shows the routing tables for this variant LIR and Minimum-Hop for the 10
node PRNET in Figure 5-1. We see that the Minimum-Hop routes always have the same or more
interference than the LIR routes. The sum of the interference over all routes was 884 for Mini-
mum-Hop and 852 for LIR, while the sum of the total hops over all routes was 134 for
Minimum-Hop routing and 140 for LIR. (We will call these variants of LIR and Minimum-Hop

routing "LIR-np" and "MinHop-np," respectively, to indicate that they do not use power control.)

5.7 LIR and Mobility

Note that LIR chooses PRUs that are generally closer than the PRUs chosen by mini-
mum-hop routing, so that as neighbor PRUs move out of range, a PRU can just increase its rf
transmit power to have a good chance of reaching its mobile neighbor PRUs. Therefore, the links
used by LIR should be longer-lived than those used by Minimum-Hop routing and LIR should

perform better than Mirimum-Hop routing in mobile PRNETS.
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Destination PRU Potential Interference Route
1 6 10-1
2 21 10-1, 1-9, 9-2
3 13 10-6, 6-3
4 6 104
5 14 10-1, 15
6 6 10-6
7 6 10-7
8 6 10-8
9 14 10-1, 1-9

A. Minimum Hop Routing Table

Destination PRU Potential Interference Route
1 6 10-1
2 20 10-1, 89, 9-2
3 13 10-6, 6-3
4 6 104
5 13 10-6, 6-5
6 6 10-6
7 6 10-7
8 6 10-8
9 13 10-8, 8-9

B. Least Interference Routing Table

Table 5-4. PRU-10’s LIR-np and MinHop-np Routing Tables

for10 Node PRNET in Figure 5-1
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5.8 LIR and Other Types of PRNETs

The examples have shown how LIR reduces interference over Minimum-Hop routing
in narrow-band common-channel random-access PRNETs without capture. As other types of
PRNETSs reduce the interference caused by overlapping transmissions, i.e., through the use of
capture, unique point-to-point channels, or contention-free channel access protocols, the routes

chosen by LIR will begin to converge to those chosen by Minimum-Hop routing.

Therefcre, although LIR will work in all PRNETS, not just common-channel random-

access PRNETS, it may not make sense to implement LIR in all possible types of PRNETS.

59 LIR and Operational PRNETSs

In general, a PRNET designer can use the following rules to determine which variant

of LIR to use:

IF the PRNET has multiple hop capability, i.e., performs routing,
THEN IF the PRNET does not have power control capability
THEN use LIR-np
ELSE IF the PRNET uses hop-by-hop acknowledgments
THEN use LIR-ap
ELSE use LIR-nap
ELSE (the PRNET has no need of LIR by definition}

By examining the list of operational PRNETs presented in Table 2-1, we see that LIR-

ap could be implemented in the EPR/IPR DARPA PRNET, the LPR DARPA PRNET, the

SINCGARS Packet Applique, and the RSRE CNR Packet Applique. Since the University of

Hawaii Aloha PRNET and the Indoor PRNETS are single hop, LIR is not needed by definition.
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Although LIR could be implemented in today’s multiple-hop Amateur PRNETS, it is not recom-

mended because the Amateur PRNET uses manual source routing.

In conclusion, the three operations that make up LIR have been described. The great
flexibility on how to perform each of these operations allows LIR to be implemented in any
muitiple-hop PRNET. The fact that similar types of operations are performed in any multiple-
hop operational PRNET means that LIR can be implemented without adding much more

complexity to existing implementations.
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6. MYOPIC SIMULATIONS OF LIR

6.1 Introduction

This chapter compares the performance of the myopic version of LIR to the myopic

routing schemes presented in Chapter 4. For simplicity, we will only run simulations for narrow-

band PRNETs without capture.

The myopic version of LIR chooses the PRU that maximizes forward progress
divided by the amount of interference caused by the transmission. This means to choose the PRU
that maximizes the forward progress divided by the number of PRUs within transmission range

for narrow-band systems without capture.

Section 6.2 compares the performance of LIR with the previous myopic strategies for
a PRNET using the threshold hearing model and a continuum of power level steps. Section 6.3

compares the performance for a PRNET with only a discrete number of power steps. Section 6.4

concludes the discussion of the simulation results.

6.2 The Basic Myopic Simulation

The basic myopic simulation will assume that a simulated PRNET is using narrow-
band signaling and has zero capture. This means that if two PRU transmissions overlap in time at
the same PRU, then they will destructively interfere with each other so that neither packet can be
received correctly. In addition, the PRUs are assumed to be using slotted Aloha as the channel

access protocol. The PRUs are located in the plane as a Poisson process. The basic simulation is

80
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an enhanced repeat of the analysis/simulation performed by Ogier who.simulated the myopic per- ﬁ

formance of LIR to many of the myopic strategies presented in Chapter 4 [Ogier87]..

Using the following notation:
L =forward progress

M = number of PRUs reached by a transmission, i.c., the potential interference
caused by 2 transmission

R =distance from transmitter to receiver

R* = actual transmission radius

R" = fixed maximum transmission radius

N = number of PRUs in the PRNET

d = average degree, i.c., average number of neighbors per PRU
The myopic strategies may be written as follows:

MFR: maximize L, R*=R"

MVR: maximize L, R* =R

NFP: minimize R* such that L >0, R* =R

LAR: maximize L/nR?, R* =R

LIR: maximize L/M,R* =R

*  Ogier is supported by the DARPA Survivable Adaptive Networks (SURAN) Program
which also supported the LIR work. The concept of LIR and some examples of its
operation were originally presented to the members of the SURAN program at its
January 1987 Implementers Meeting by the author [Steve87]. LIR’s simple solution to
the previously difficult problem of spatial reuse and power control influenced the
members of the SURAN working group to further work in this area. This related work
is discussed in Chapter 8 in the section on ideas for future research.




82
We define a PRU'’s single hop throughput, s, as: ‘
s = (throughput of slotted Aloha in a single hop neighborhood) /
(number of PRUs in the single hop neighborhood)
=1/(Me) [Silve80]

Therefore, the total network single hop throughput, S, is:
S =Nes=N/Me
Let z be the average expected progress, e.g., in miles, per slot from a transmitting
node:
z=s5eL
Therefore, the total network expected progress, Z, is:
Z=Ne z=Se L
Then Z VA is a normalized measure of average progress per slot, where A is the |
average density of PRUs per unit area. Z VA is the normal measure of end-to-end throughput
used in [Takag84] [Hou84] [Hou85a] [Hou85b] [Hou85¢c] [Hou86], and is equivalent to g, the

end-to-end throughput measure used in [Silve80] [Silve83a) [Silve83b] [Klein78].

Note that, as discussed in [Hajek83], L/M is a local measure (independent of the
PRNET's global geometry) that is proportional to the end-to-end throughput. Therefore, we will

obtain L/M as well for comparison of the myopic schemes.

The simulation to compute the myopic throughput is as follows: 99 PRUs were
uniformly distributed in a unit square along with a PRU (designated as the transmitter PRU) in

the center of the square. Thus A = 100.
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The ired numbe: _. neighbors, d, was input and a fixe * ransmit radius was chosen
to yield the average number of neighbors. Remembering that:
N = AnR"?

for nodes distributed in the piane as a Poisson process, we can re-arrange the equation and sub-

stitute d for N and 100 for A to get:
R'=Vd/100x
The x direction represents forward progress. If a PRU cannot be found in the forward

direction within radius R", then we consider L., M, S, and ZN to be zero for that run.

Thus, L, M, S, and ZVA were computed for each of the myopic schemes; 1000 runs
were made and the results averaged to obtain the L, M, S, and ZVA for a single value of M. The
simulation was then run for values of d between 2 and 25. Figure 6-1 shows a flow-chart of the

simulation algorithm.

Figure 6-2 shows the average hop-by-hop throughput versus average number of
neighbors for .ach of the myopic schemes. Figute 6-3 shows the average number of interferen-
ces that occur per average number of neighbors. Figure 6-4 shows L, the average single hop
forward progress, for each myopic scheme versus the average number of neighbors. Figure 6-5
shows the average of L/R". Figure 6-6 shows the efficiency of each of the myopic schemes, and

Figure 6-7 shows ZVA, a measure of the end-to-end throughput.

Note that the siinulation values of the myopic schemes agree fairly well with the

published results in {Hou84] [Hou85a] [Hou86], except that: (1) our end-to-end throughput cur-
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Figure 6-1. Basic Myopic Simulation Flowchart




85

Myopic Strategy

—-— MFR

—— MVF
LAR

—¥- NFP
=
> LIR

30

]
25

20

— O OIS I L

1
15

Average Number of Neighbors
LR

|
10

Nodal Hop-by-Hop Throughput

3
S

0.16

0.14 |
0.12 |-
0.10

,0.00

Figure 6-2. Hop-by-Hop Throughput




86

SI0QU3IN JOo qumN aFesany

1[4 S1 o1 S 0

$OWRIRW] N4 Jo RqumnN

Figure 6-3. Interferences

SRS ATRAEr S SN AU S SRR SO A 26 AT T4 ) S LA T A LY Ly AN I R A AT A S

i
Lx—l- VSV RV XU S he s Y



pes ~

87

-0 MR
—t— MVF
-k~ NFP
= LAR
< LR

Forward Progress

|
20

1
15
Average Number of Neighbors

L
10

0.25

0.20 |-
0.15
0.10 |
0.05 |-
0.00

Figure 6-4. Average Single Hop Forward Progress




88

- MFR
—+ MWVR
-¥ NFP
8- LAR
—>¢ LIR

P - ) . ] a

AN an
AT
v
17, \\/

Dy "Ry

i
15
Number of Nodes

Forward Progress, Fract. of Max Possible

=]

60 -

i ] g
o o (=]

1.00
0.80 -

Figure 6-5. OneHopPromqu;eoanhmmPouiblermss

B

E—‘mm-;- Pumn OGRS A A LT A SN CLR T A Falt A uuuumwmﬂmml



89

] 1 &
i . - D
<
<)
0

+ P 4 8

S
A
15
Average Number of Neighbors

Efficiency (Progress / Interferences)
4’4
% A
%
|
5

' Y,
e
1 I )| 1 o
q & = 2 & 8
Qo (=3 [ = o (=3 o

e v eFh P 2SR W B A AT




NFP
LAR

&
ic Strategy
> LR
8

M
-0 MFR
—+— MVE
K-
=

1)

ALY

i
15
Average Number of Neighbors

- ¥
= o
= 8
S =~

0.00

Figure 6-7. End-to-End Throughput
i

A e St s % L M 4N LS LS P Ll




S - - -0 = 0 0 =5 7T T/ o TT T T T T T T T TR T T TR W TR VO N TS Newmwy e - T ——— TS TS THENETET TR T AR TI R TR WS R TN WIS N TR N TR W T OIE R W VRSN OWT W TVNE NN Y TN VRS vvawrves,

91
ves show a little better performance whan in [Hou84] [Hou85a] [Hou86); and that (2) our yA[N q
end-to-end throughput curve for NFP does not decrease slightly with increasing d ford >10, but |
instead remains level. We presume that this difference occurs due to the difference in how we
calculate the forward progress. We followed the method of [Silve80] [Kl=in78) [Takag84] and
neglected a slight negative correction to L, the forward progress, for simplicity. Our MFR

throughput curve therefore corresponds very closely to the MFR curve in | Takag84].

The results show, as expected, that LIR provides the best myopic end-to-end perfor-
mance. NFP shows better hop-by-hop perform.ance but less end-to-end performance because
each NFP hop covers a small range compared to an LIR hop. We note that the LIR end-to-end
throughput is insensitive to changes in the average number of neighbors greater than about eight.

Therefore, LIR would be a good algorithm to implement in dense PRNETs.

6.3 Extending The Basic Myopic Simulation To Include Discrete Power Steps

The basic myopic simulation from 6.2 was extended to include discrete power steps.

VALY

We basically assumed that there was sufficient range control to cover 2 orders of magnitude, i.e.,
from 0.1 to 10 kilometers or from 1 to 100 kilometers. As shown in Section 2.2.1.2, this requires
40 dB for a Free Space Propagation Law and 80 dB for a Plane Earth Propagation Law. The dis-
crete power steps are assumed to divide the dynamic power range up into even dB steps resulting

in uneven changes to the transmission radius as shown ir: Figure 2-2.

We extended the notation from 6.2 to include discrete power steps:

T RIRETA” BT A
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P = number of discrete power steps; (P=1,2,3,...)

R' = fixed minimum possible range (note that if P=1, then R'=R")
Rp(i)= R' + (R"-R")(i-1)/P; (1SisP)
We then modified the myopic strategies as follows:

MFR: maximize L, R* = R" (unchanged)
MVR: maximize L,
R = { R’ if RSR’
Rp(i) if Rp(i-1) < R SRp(i)

NFP: minimize R* such that L > 0,
{ R’ if RSR’
R* = . . . .
Rp(i) if Rp(i-1) <R SRp(i)
if there are two or more PRUs with L between R* and the previous Rp, then
pick the PRU that will maximize L

LAR: maximize L/R?,

R* = { R’ if RSR’

- Rp(i) if Rp(i-1) <R SRp(i)
if there are two or more PRUs with L between R* and the previous Rp, then
pick the PRU that will maximize L

LIR: maximize L/M,

R* = { R if RSR’

- Rp(i) if Rp(i-1) <R S Rp(i)
if there are two or more PRUs with L between R* and the previous Rp, then
pick the PRU that will maximize L

Figure 6-8 is a flowchart of the extended simulation. Figure 6-9 shows the ZVA end-

tu-end throughput versus the average number of neighbors for different numbers of power steps
for MFR. Figures 6-10 through 6-13 show the similar graphs for MVR, NFP, LAR, and LIR,
respectively. As expected, the MFR graph shows no difference with the number of power steps

because it always uses the maximum possible power step. Note that, although MVR and NFP
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show noticeable improvement with an infinite number of power steps, they do not show appreci-
able improvement with a small number of steps, such as ten, which will be found in real
operational radios. LAR and LIR show a moderate amount of improvement with ten steps, but

not with five steps or less.

Figure 6-14 shows the ZVA end-to-end throughput versus the number of power steps
for the different myopic schemes for an average of five neighbors. Figures 6-15 through 6-18
show the similar graphs for an average of 7, 10, 15, and 25 neighbors, respectively. These graphs
show that NFP and LAR actually perform worse with a few power steps, such as 2 or 5, then
does MFR. LIR shows the best performance for all power steps in these graphs. For ten power
steps, and only a few neighbors, we see that the LIR is best, followed by LAR, MVR, NFP, and
MFR. For ten power steps and many neighbors, we see that LIR is best, followed by LAR, NFP,

MVR, and MFR.

Figure 6-19 replots L/R" from Figure 6-5 against Rp(i)/R" for five power levels. Due
to the random distribution of PRUs, a few PRUs will be within the smallest transmission ranges.
Therefore, for only a few power steps, e.g., two or five, NFP and LAR will pick the same next-
PRU as MFR and MVR except for the few times when a PRU is within the smallest transmission
range. However, the efficiency of a PRU within the smallest range is likely to be smaller than the
efficiency of the PRU chosen by MFR and MVR for small neighborhood degrees so that when
NFP and LAR differ from MFR and MVR, they actually lower their overall performance as se=n

in Figures 6-14 through 6-18.
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6.4 Conclusions

These graphs indicate that LIR has better PRNET performance than MFR or MVR,
implying that operational PRNETs would improve their performance by using LIR and dynamic

power control.

The simulation results indicate that the imp:ovement of MVR and LIR over MFR ap-
pears to be small for a small number of discrete power steps. This result arises from the
assumptions that all PRUs at a distance R will reccive a transmission at the same power level.
Section 2.2.1.2 discussed that this is a poor assumption, since PRUs at the same distance may
have variances of up to 24 dB between their actual receive power levels. This vuriation of power
levels in operational PRNETSs means that a few power levels should provide a greater improve-

ment over no dynamic power control than observed in the simulation results of Section 6.3.




7. MULTIHOP SIMULATION OF LIR

7.1 Introduction

Chapter 6 showed the results of simulations comparing myopic LIR with the previous
myopic strategies. Because of the inherent short sided nature of myopic strategies, we also simu-
late LIR and minimum-hop routing with and without power control in a multi-hop network
including actual packet forwarding with queueing delays and retransmissions of interfered pack-

ets.

Section 7.2 describes the simulation model and Section 7.3 discusses the simulation

results.

7.2 The Multihop Simulation

The multihop PRNET simulator was built as several modules with four major parts:
(1) a network generator, (2) a route gene.ator, (3) a traffic simulator, and (4) a statistics reducer.

A flow chart of the overall flow of the simulator is shown in Figure 7-1.

Input parameters to the simulation include the number of PRUs in the PRNET; the
maximum possible transmission range; the uniform offered traffic rate in packets per PRU per
time slot; the length of the simulaticn in time slots, the Aloha transmission interval, i.c., the num-
ber of time slots over which to randomize a transmission; the maximum number of times 2 PRU
is to (re)transmit a packet before discarding it; the PRU packet queue length, i.c.. how many

packets a PRU can store before it has to discard a received packet; and how many runs to make
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using an identical set of simulation parameters but with different initial random seeds.
The network generation phase creates a random network with the specified input
number of PRUs which are randomly placed at integer vertices of a 50-by-50 unit square as a
Poisson process. Note that we allow multiple PRUs to occupy the same vertex, i.c., it is possible
for two PRUs to be a distance of zero from each other. The average density, A, is:
A = (number of PRUs )/ (area of square ) = (number of PRUs)/ (2500 units 2)
Thus the number of PRUs within a circle of radius R which is completely contained within the 50
by 50 square is:
AnR? = m (number of PRUs) R 2 /2500
The simulation tested the three variants of minimum-hop routing and LIR discussed in

Chapter 5, i.c., MinHop-nap, MinHop-ap, Min-Hop-np, LIR-nap, LIR-ap, and LIR-np. ﬁ

For both routing strategies with power control, the simulation also examined the use
of acknowledgments with enough power to reach both the previous and next PRUs and not using
acknowledgments, i.c., with only enough power to reach the next PRU. Note that the MinHop-ap
routing table is identical to the MinHop-nap routing table, while their processing in the traffic
simulation is different. The LIR-ap and LIR-nap routing tables are different as well as the

processing in the LIR traffic simulation. When the simulated PRNET is fully connected, the

MinHop-np and LIR-np routing tables are identical.

The multihop traffic simulation model uses the same channel model a5 the basic

myopic simulation did in Section 6.2, namely that the PRNET is using narrow-band signaling
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propagates according to the threshold hearing function. The narrow-band signaling with zero
capture means that if two PRUs overlap in time at the same PRU, they will destructively interfere

with each other so that neither packet can be received correctly.

A uniform offered traffic model was used, which means that each PRU generates
packets to every other PRU with the same probability. This probability was input as the uniform
offered traffic rate per PRU per time slot. Basically, every PRU generated a random number
every time slot. If the random number were less than the offered traffic rate, then the PRU
generated a packet for forwarding through the PRNET. If a packet were generated, then the PRU

generated a random number to determine which PRU would be the destination of the packet.

Note that when the transmission range is small, we sometimes i:ad partitioned net-

5.
PI

works. When building the routing tables for the partitioned network, we set the next PRU in the
route to zero to indicate that a route did not exist. Then the traffic simulator would discard pack-

ets at the source PRU if the routing table indicated that a route did not exist.

The packet buffer queue at euch PRU was designed as a first-in, first-out (FIFO)
queue, with newly generated or received packets placed at the end. If the queue is full, deter-
mined by the simulation packet queue lerigth parameter, then the packet is discarded. When a

PRU is allowed to transmit, it picks the first packet in the queue.

If muitiple trarsmitted packets overlap at a PRU-i, including a transmission by PRU-i,

then interference is said to occur and the packet cannot be received correctly by PRU-i. If the
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packet were received correctiy at the next PRU in the route, the packet is discarded by the trans-
mitting PRU. The simulation assumes instantaneous "free" acknowledgments of successfully
received packets. Therefore, if a transmitted packet is received correctly by the next PRU, the
transmitting PRU discards the packet from its queue. If a transmitted packet is not received cor-
rectly, the packet stays at the front of the queue for retransmitting unless the packet has been

transmitted the maximum possible number of times, at which time the packet is discarded.

The simulation used a uniform probability function to <determine the Aloha transmis-
sion probability. Therefore, if the uniform interval is X slots, the probability of transmission by a
PRU in any given slot is 1/X. Because the network performance tumed out to be very dependent
upon the transmission probability, the simulation supported three methods of calculation. First, a
constant interval (in slots) could be input that all PRUs would use; or .econd, a coefficient could
be input that would be multiplied by the average network degree of the actual simulated network;
or third, a coefficient could be input that would be multiplied by the actual network degree of the

transmitting PRU, i.e., the hitting degree discussed by Silvester [Silve80].

For MinHop-np and LIR-np, the simulator transmitted each packet using the simula-
tion maximum transmission range parameter. For MinHop-ap and LIR-ap. the simulator
transmitted each packet using the minimum range needed to reach both the previous and next
PRUs, as discussed in Section 3.4. Note that, because the simulation assumed instantaneous free
acknowledgments, the destination PRU did not transmit back an active acknowledgment. For
MinHop-nap and LIR-nap, the simulator transmitted each packet using the minimum range

needed to reach the next PRU.

(B
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The total end-to-end throughput was defined to be the number of packets that reached

their destination during the run of the traffic simulation. Therefore, the average end-to-end
throughput per slot is the total end-to-end throughput divided by the number of time slots over
which the simulation was run. The end-to-end delay is the average number of time slots it took

to deliver packets from their source to their destination.

We discovered that we could obtain the same maxinium network throﬁghput using the
three methods of calculating the transmission probability. However, using a constant simulation
transmission probability parameter requires many simulation runs since the average neighbor-
hood size is different depending upon the routing protocoi being simulated. The resuits using a
simulation coefficient parameter that is multiplied by the actual network degree of :he transmit-
ting PRU had more variance than did the results using a simulation ccefficient parameter hat is
multiplied by the average network degree. Thus, using the first coefficient parameter would re-
quire more runs than using the second coefficient parameter to achieve an average result with the
same degree of assurance. Therefore, we used the second coefficient parameter in all of the runs

presented in this dissertation.

Experimentation with 25 nodc PRNETs suggested that 1000 slots were long enough
for the traffic simulation to reach steady state for any single simulation run and that averaging
over 10 simulation runs is sufficient to provide results with low variances. We always set the
number of retransmissions and the transmit queue lengths to 999 so that no packets would be

thrown away due to too many retransmissions or filled queues during the 1000 time slot traffic

simulations.
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7.3 Simulation Results &

Several simulations were run to determine the optimal coefficient to use to obtain the
transmission probability. Figuie 7-2 shows the end-to-end throughput versus Aloha transmission
coefficient for partially connected 10 node PRNETs. Figures 7-3 through 7-7 show similar
¢ :aphs for fully connected 10 node PRNETS, partially and fully connected 25 node PRNETS, and
partially and fully connected 50 node PRNETSs. Although a value of 1.25 for the coefficient does
not yield the maximum throughput for all cases, it yie.ds a throughput close to the m-.imum for
all cases. Therefore, we will use a value of 1.25 for the Aloha transmission coefficient for all of

the rest of our simulations.

Figure 7-8 shows the end-to-end throughput per offered traffic rate, and Figure 7-9
shows the end-to-end dela; per offered traffic rate for partially connected 10 node PRNETS. ﬂ
Figures 7-10 through 7-15 show similar graphs for fully connected 10 node PRNETS and partial-
ly and fully connected 25 node PRNETs. These graphs show that LIR with power control can
support more traffic than Min-Hop with power control without adding an undue amount of addi-

tional end-to-end delay.

The end-to-end throughput and delay corresponding to an offered traffic of zero pack-

ets per PRU per slot were not obtained by running the traffic part of the simulation (as was done
for all of the other simulation results), but were obtained by analysis. It is obvious that the end-

to-end throughput, in the liinit as the offered traffic approaches zero, is zero. Similarly, the

end-to-end delay, in the limit as the offercd traffic approaches zero, is the average number of
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hops per route times the average Aloha transmission interval (or half the maximum Aloha trans-

mission interval), since, in the limit there will be no retransmission or queueing delays.

Figure 7-16 shows the end-to-end throughput versus the number of nodes in the
PRNET using a maximurm transmission radius of 25 units, i.e., for partially connected PRNETS.
We see the following stratification in performance: MinHop-np performs the worst, followed
fairly closely by LIR-np, followed by MinHop-nap and MinHop-ap, followed finally with LIR-
nap and LIR-ap performing the best. We see that for 25 or more nodes, the PRU performance for
LIR with power control is proportional to the logarithm of the number of PRUs in the network.
The fairly flat performance of the three MinHop strategies and LIR-up probably arises from the
fact that average neighborhood size increased while the maximum transmission radius did not.
Therefore, as the number of nodes increases for these four strategies, so does the average inter-

ference per transtaission.

Next, we examined the performance of partially connected PRNETS, where the
average neighborhood size (for a PRU whose transmission range is entirely within the 50-by-50
square) remained constant as the number of PRUs in the PRNET increased. Figure 7-17 shows
the throughput versus number of PRUs where the average neighborhood size contains ten PRUs.
Figure 7-18 shows the throughput versus the number of PRUs where the average neighborhood
size contains 20 PRUs. For an average density of 10 PRUs per neighborhood, we used a maxi-
mum transmussion range of 28 units for the 10 node PRNET, 18 units for the 25 node PRNET, 13
units for the 50 node PRNET, and 9 units for the 100 node PRNET. For an average density of 20

PRUs per neighborhood, we used a maximum transmission range of 40 units for the 10 node




129

$OPON JO I3qUIN

o1°0

060

Figure 7-16. Throughput Versus Number of Nodes

for Transmit Radius = 25

AT AN MR AT EMEREE e SR R S B B TS W At S 20 S AF PR AF RN A



130
:
:
;

for Averge Degree of 10

Figure 7-17. Throughput Versus Number of Nodes

AZI AIW LW 2 W LW AT MW AT LOW L S ASEE LA MR L L LI I AT L

|
s;
E_



131

|e
|
®
. E
: 1
gl |
a _L 1 | | | 1 (=]
-~ 9 ® & 9 N ¢ .o 8§ = o
o (=] (=] Qo (= o =~ =] =
Figure 7-18. Throughput Versus Number of Nodes
for Averge Degree of 20 q

AR W ST A LU S PR LA L S SRCLIRIS A A SRS IR LAY P TR IR AR AR TR BRSNS S SN MRS M ST I N NN AT A R A MR AT Al




132
PRNET, 25 units for the 25 node PRNET, 18 units for the 50 node PRNET, and 13 units for the

100 node PRNET. Figure 7-19 shows the actual and theoretical average neighborhood size to il-
lustrate the importance of edge effects for the different sized networks that were simulated to
obtain the results of Figure 7-17. We can see that the edge effects decrease, e.g., the average
neighborhood size converges to the expected neighborhood size as the number of PRUs in the
PRNET increase. Note that the maximum transmission range for both cases for the 10 node
PRNET included area outside of the 50-by-50 square. Some partitioned networks were generated

and used when we made the average density equal to 10 PRUs per neighborhood.

The performance increases as the logarithm of the number of PRUs for all six routing

strategies when the number of PRUs in the PRNET is greater than 25. The greater than expected

ii"t performance for the 10 node PRNET, when compared to the other size PRNETS, probably arises

Ay

(. due to extreme edge effects on the 10 node PRNET. We notice the same per!- rmance stratifica-
tion among the six routing strategies as before, with LIR with power control performing the best,

followed by MinHop with power control, followed by LIR-np, and with MinHop-np performing

worst. In general, as expected, the LIR-nap and MinHop-nap performance is better than the

respective LIR-ap and MinHop-ap performance.

Figure 7-20 shows the end-to-end throughput versus the number of PRUs for fully
connected PRNETs. We noticed that the routing strategies without power control have an end-
to-end throughput of about 1/e, while the minimum hop routing strategies with power control
have an end-to-end performance of about 2/e. Both of these results agree with the expected

! theoretical performance of slotted Aloha, thus providing confidence in the correctness of the mul-

e eal —-——— b e\ e e 4 £ ea = e h A b s ek B b e L e e A s e R M im A m e s e LA A - e e A m e n R ae o ma A R hmm e e Ak wh s S Ak S Adn A M fa A e e
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tihop simulation. The slotted Aloha maximum performance of 1/e for a fully connected network a
without power control is a well-known result proved ty Roberts [Rober?75]. The slotted Aloha
maximum performance of 2/e for a fully connected network with power control is a less well-

known result proved by Silvester [Silve80]"

We note that, as expected, LIR-np and MinHop-np performn exactly the same as do
MinHop-nap and MinHop-ap for the fully connected PRNETs. MinHop with power control and
LIR-ap both have the same performance for 10, 25, and 50 node PRNETs. Also, the LIR-nap
performance is lower than MinHop-nap and LIR-ap for 25 and 50 node PRNETs. Throughput
for LIR nap and LIR ap increase as the logarithm of the number of PRUs with LIR nap ultimately

performing better than LIR ap for PRNETS having 200 or more nodes.

In conclusion, we note that PRNET performance using LIR is greater than or equal to e

* A brief sketch of Silvester’s analysis of the slotted Aloha maximum performance for
a fully connected network with power control is as follows: Every PRU in the
PRNET transmits to every other node with identical probability and adjusts its trans-
mit power to just reach the intended PRU. Therefore, on the average, a PRU will hit
n/2 PRUs, which is the average neighborhood size. |

Now, the averzge protability of a successful transmission by a single PRU is:
s=  Pr{source PRU transmits on average} x !
Pr{destination PRU does not transmit on average} x |
Pr{PRU:s in average neighborhood around destination do not transmit
on average)
Because, we assume that the PRUs are identical, they all transmit with the same
probability on average, p. Thus:
s=p(l-p)(1-p¥?-2
By differentiating with respect to p. we see that the performance is optimized when
p =n/2. Thus:
s=nf2(1 -n/2)"/2'l = 2(n/e) forlargen
Thus, the total network single hop throughput S, which is also equal to the total end-’
to-end throughput for a fully connected PRNET, is n s, so that @
S =ns =2/e forlargen
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that using MinHop routing. In addition, LIR-np out performs MinHop-np if the network is only

partially connected. This is solely a function of the muting and does not show up in the myopic

simulation (see Figures 6-14 through 6-18 where LIR with one power level performs identical to
MFR).




8. SUMMARY

8.1 Conclusions

This dissertation has presented methods of performing power control and spatial reuse
in operational common-channel random-access PRNETSs. Although, the methods presented will
work in other types of PRNETS, they have their biggest impact in common-channel random-
access PRNETs. These methods are apparently the first to lend themselves to implementation in

operational common-channel random-access PRNETS.

Methods of implementing power control were presented that will work below any net-
work routing algorithm. These methods include suggestions on how to work with both passive

and active hop-by-hop acknowledgments.

A new routing protucol, Least Interference Routing (LIR), was presented that directly
minimizes the total potential PRNET performance degrading interference along a route, thus sup-
porting spatial reuse. LIR will work in PRNETs with and without power control because it
routes packets through the sparse parts of the PRNET. LIR is an easy-to-implement algorithm

that does not require position location information or rf measurements such as s/n ratios.

Myopic and multiple-hop simulation results indicate that dynamic power control im-
proves network performance over a single constant power level and that LIR improves network

performance over Minimum-Hop routing.

137
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8.2 Areas for Future Research

There are many areas of research suggested during the course of this research that are
worthy of further study. Some of these areas are:

(1) Implementation of Power Control and LIR

Although the simulations indicate that power control and LIR can be performed in
PRNET: to improve performance, it would be useful to implement these algorithms for test pur-
poses in actual operational PRNETSs. Indeed it is likely that the DARPA SURAN program will
implement the power control algorithms in the latest generation LPR DARPA PRNETS.

(2) Methods of Measuring Potential Destructive Interference

This dissertation suggests some simple methods of me asuring the potential destructive
interference across a link. We do not include the different effects from the overlap functior:
caused by different channel access protocols, i.e., CSMA. This would be a useful area for further

research because many operational PRNETs use CSMA.

Many advanced PRNETS use spread spectrum which alleviates but does not eliminate
interference. Therefore, it would be useful to obtain some methods of measuring the potential
destructive interference in operational spread spectrum PRNETS.

(3) Methods of Reducing Route Bottlenecks at PRUs

LIR is similar to any shortest path routing algorithm in that it assumes that each route

is fairly independent of other routes. Therefore, it is possible that many routes can go through

one PRU, causing a bottleneck. Although LIR does help spread routes from the middle of net-
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works to the outside, it does not explicitly take t*e bottleneck problem into consid-+=tion. Ogier

is currently examining this problem as part of the DARPA SURAN program [Ogier§7].

(4) Methods of Including the Offered Traffic

LIR is designed for the uniform offered traffic case. Greater spatial reuse may be
realized if the actual traffic were taken into consideration. Ogier is currently examining how to
include power control with traffic-dependent routing as part of the DARPA SURAN program

[Ogier87].
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ANSI
ARPANET
ARQ
BLOS
BTMA
CDMA

CSMA
DARPA

dBm
DoD
ES
EW
FDMA
FEC

FIFO

FM

GHz

GPS

hf
HICAPCOM
IS

ISO

LAR

LIR

APPENDIX A. ACRONYMS
amplitude modulation
American National Standards Institute
Advanced Research Projects Agency Network
automatic-repeat-request
beyond-line-of-sight
busy tone multiple access
code division multiple access
combat net radio
carrier sense multiple access
Defense Advanced Research Projects Agency
decibel
power in dB above 1 milliwatt
Department of Defense
End System
clectronic warfare
frequency division multiple access
forward-error-correction
frequency hopping
first-in, first-out
frequency modulation
Giga Hertz
Global Positional Satellite
high-frequency
High Capacity Communications
Intermediate System
International Standards Organization
Least Area Routing

Least Interference Routing
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LIR-ap LIR with acknowledgments and power control
LIR-nap LIR without acknowledgments but with power control
LIR-np LIR without power control

LOS line-of-sight

LPR low-cost packet radio

MFR Most forward with Fixed Radius

MH:z Mega Hertz

MinHop Minimum-Hop routing

MinHop-ap Minimum-Hop routing with acknowledgments and power control
MinHop-nap  Minimum-Hop routing without acknowledgments but with power control
MinHop-np Minimum-Hop routing without power control

MSS Multiple Satellite System

MVR Most forward with Variable Radius

NFP Nearest with Forward Progress

OSI Open Systems Interconnection

PN pseudo-noise

PRNET packet radio network

PRU packet radio unit

of radio frequency

RSRE Royal Signals and Radar Establishment
SCRA Single Channel Radio Access

SEEP Simple End-to-End Protocol

SEFN Survivable Extended Frequency HF Network
SINCGARS Single Channel Ground and Airbormne Radio System
s/n signal-to-noise

SURAN Survivable Adaptive Networks

TDMA time division multiple access

uhf ultra-high-frequency

vhf very-high-frequency
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APPENDIX B. SYMBOLS
area
average degree,i.c. average number of neighbors
amount of potential PRNET performaice degrading interference caused by a
PRU-i transmission
amount of potential performance degrading interference a PRU-i transmission
causes to otherwise successful receptions by PRU-k

conditional probability that a PRU-i transmission causes destructive
interference with an otherwise successful transmission from PRU-j to
PRU-k, given that the PRU-i and PRU-j f signals overlap in time at PRU-k

forward progress
number of PRUs which can hear a transmission

probability that the rf signals transmitted by PRU-i and PRU-j overlap in time
at PRU-k

transmission probability

probability function

distance between transmitter and receiver
actual transmission range

minimum transmission range
maximum transmission range
transmission range at power level i
single node single hop throughput
network single hop throughput

single node expected forward progress
network expected forward progress
average density of nodes per unit area

pi (3.14159 ...)
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